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o I. INTRODUCTION

. The objective of this research effort is to develop a predictive

G numerical 2-D model which meets the following twenty-one criteria:

ﬁ;ﬂ 1. Realistically models the geometry and velocity distribution of

% any stretching rod associated with state-of-the-art self-forging
|:) ) fragments (SSF) and shaped-charge warheads.

jﬁj 2. Geometrically models any zero-obliquity target containing horizon-
f{ﬁ tal or vertical layers, multiple materials, free surfaces and

o possible air spaces.

3. Geometrically formulated so that the stretching rod and target
model can be readily extended to oblique impacts.

4. Includes all thermal properties of anv rod or non-chemically
f reactive target-material.

5. Equations-of-state which account for phase changes.

6. Compressible and viscous effects considered for fluids.

7. Elastic-viscoplastic constitutive equation used for solid
materials.

)

o 8. Strain-displacement relationship includes large rotations and

2 extensions.

i.'. “

-,

,“i? 9. Primary shocks are included in the model.

10. Time-dependent fracture criteria is used for solid and liquid

x materials.

o

s, 11. Temperatures within the solid target and rod can be determined
:}] if initial termperatures and convective film coefficients are
'O known.

12, Computation times should be less than 10 minutes for a 2-D
penetration process which involves 500 us of penetration time.

13. Quantitative agreement with existing penetration and penetration
vs. time data for shaped-charge jets.

R
e,
.

1

S l4. Quantitative agreement with data for radial target response for
‘ monolithic or layered metallic targets impacted by a stretching
rod.

15. Quantitative agreement with experimental phenomenon associated
with radial target influence on axial penetration.
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16. Qualitatively predicts experimental phenomenon associated with
"particle" jets.

17. Qualitatively predicts experimental phenomenon associated with
confined columns.

18. Qualitatively predicts experimental phenomenon associated with
ejected material.

19. Qualitatively predicts experimental phenomenon associated with
heating of target material by a penetrating jet.

20. Qualitatively predicts experimental phenomenon associated with
the penetration of brittle hard materials.

21. Qualitatively predicts experimental phenomena associated with
the influence of lateral dimensions and confinement upon the
behavior of brittle hard materials.

This 2-D model is to be developed over a three-year time-span, and
this report presents the results of the effort for the first year.

Obviously, in order to meet the above criteria, oné must insure that
the pertinent physical parameters are included in the model, and that the
laws of physics are included in a consistent manner. Therefore, this
work concentrated upon the establishment of a self-consistent set of
equations. However, independent and University sponscred research was
concerned with the review of state-of-the-art solution techniques used
in existing structural and hydrodynamic codes. Since this independent
research had a bearing on the development of the equations, the review
will be discussed first.

II. OVERALL SOLUTION SCHEME

Recent publications involving non-linear dynamics of solids,l the
flow of solids during extrusion,2 numerical heat—transfer,3 and computational

. Dden and . F. Car

MECHANICS, Volume V of t
bkl S

Jew uerseg, 1564.

3 ®
«?
il
J
2
'3

[TF ELEMENTS: SPECIAL PROBLEMS IN SOLID
Fintte Element Sertes, Prentice~dail Ine.,

Cs

0. C. Zienkiewicsz and P. N. Godbole, "Flow of Plastie and Visco-Plastic
Soiids with Special Rejerence to Extrusion and Forming Processes, " In

Num. Meth. Engr'., O, 3—.'0, 19374,
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4
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0. C. Zienkiewiez ind C. <. Parekh, "Transient Field Prcblems: Two-
imensiona. wmd Tavee-imenstonal Analuysis by Isoparameiril Jintte

- - il 77 -‘y)ﬁ,f\
Zlemenzs," Int. . Jumericzl Methods Engr., 2, 6I-71, -2/U.
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fluid-mechanics , ' show that the finite-element technique (mathematically
known as the Method of Weighted Residuals) can yield good approximations.
Most importantly, a ''good” approximate solution can be obtained using a
relatively small number of judiciously selected "super elements." Also,
the problem appears to be well-posed if velocities and/or temperatures are
taken as the "essential' boundary conditions, with the stresses, pressure
and heat fluxes taken as the ''matural" boundary conditions. Hence, these
ideas must be kept in mind during the establishment of the self-consistent
set of equations.

Figure 1 shows an assumed system associated with one particular region
of material. This region of material is similar to a moving control-volume
with a time-dependent shape and volume. The volume and shape changes due
to both boundary and internal conditions, and possible mass transfer across
its boundaries. Note that the applied boundary conditions can involve
velocity, and surface pressures (negative tractions) due to detonating
explosives. TFigure 2 shows a schematic diagram of a region with a sub-
region undergoing a phase-transition due to the applied boundary conditions.
This phase-transition could be either a thermodynamic transition, e.g.,
solid to liquid via a melting region,® or a polymorphic tramsition involving
the atomic structure of the solid material.®

Since the thermal-mechanical-failure properties of the material undergo
drastic changes due to either type of phase-transition, the author chose to
represent each phase-region of material as a '"super-element" of the finite-
element approximation. Furthermore, any number of interacting super-
elements can bde used tO represent any particular problem of interest, i.e.,
4 shaped-charse ‘et Impacting a target, or a shaped-charge jet being
impacted tv anotier bodvy.

Note that this usape of separate elements for each "phase" region can
cause the "creat:ion” and "annihilation" of elements during the penetration
orocess. Mathematicallw, this is included in all the conservation equations
via mass, momentum and energy transtfer across the phase-boundary SPB joining
two Jifferent phase regions. Furthermore, prior to a phase-tramsition,
certain phase regions will belong to a '"null-set,”" i.e., the physical size,
T4ss, momentum and ernergy are identically zero. Numerically, because of the
finite zime-steps, the initial zone of a new phase is mapped from the
solution at the previous time step, e.g., the geometric locations where
T>Tm. Because of certain discontinuities in volume, and endothermic or
exothermic entropv changes. a ''refined" phase-zone may be required via an
iterative solution at that particular time-step.

axe., FINITE ELZMENT COMPUTATIONAL FLUID MECHANICS, Hemisrhere
ini CJorc., wew IJorK, 1333.

. H. VanViack, MATERIALS FOR ENCINEERING, Chapters & and 6, Acdison-
wesley Pubiishing Co., Feading, Mass., 1382.
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. The above process of creation and annihilation of elements (hereafter
referred to as the "C and A" process) is somewhat similar to the process
of "rezoning" used for highly distorted regions in Lagrangian hydrocodes
such as HEMP. However, in the C and A process, the mass, momentum and
energy of the annihilated material is mapped directly (within the accuracy
of the finite-element method) into the created material. Conversely, (to
the author's knowledge) the mass, momentum and energy of the highly
distorted regions are "lost'" during a rezoning process.

It appears that the above C and A process using super-elements differs
considerably from current finite-element (hereafter denoted as FE) methods
concerned with contact and indentation problems (see review in reference 1).
Consequently, a few comments will be made concerning current FE methodology
and the proposed extension to the C and A process.

The most commonly used technique for solids involves the displacement
formulation which requires a semi-inverse method where the functional form
of the displacement solution within the FE region is assumed a priori.
However in penetration problems, initial and/or interface velocities are
specified, certain velocities are known (usually zero at certain boundaries),
fluids can occur within the target and in many problems velocities are the
desired quantities. Therefore, the author chose to use a velocity formula-
tion* for the FE model. Because of the large amount of existing radio-
graphic and framing-camera data and various hydrodynamic code calculations,
1 believe that good initial guesses on velocity distributions can be made.
Obviously, if a situation arises where no information exists or the initial
guesses prove to be ''poor," any material region can be subdivided into
numerous interconnected subdomains i.e., more than one super-element. If
the solution technique is properly formulated, one should be able te
"converge" to a solution of the desired accuracy with respect to a pre-
selected measure of error. Hence the solution technique must contain a
consistent "convergence" criteria, and this is currently being studied via
independent and University-funded research.

As will be pointed out later, the Method of Weighted Residuals, as
implemented by the FE Method, involves the solution of a simultaneous set
of non-linear algebraic equations, whose degree of non-~linearity depends
upon the magnitude of the deformations and the constitutive equation for the
material. The review indicated that the most popular method of solving this
set of equations is the following approach:

a. drop all non-linear terms and solve the simultaneous linear set

b. add the first non-linear term to the set of equations, in the
previous linear solution and then iterate until a certain
criteria of convergence is achieved

*
Displacements are kinematically related to the velocities via a simple

time-integration over the velocity history.
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The advantage of the above approach is that the addition of the non-
linear terms can be controlled by the user. Hence, numerical experiments
can be conducted to ascertain the importance of the various non-linear
contributions and those deemed of lower-order contributions can be '"turned-

off" by

of solution and the amount of computer time it takes to achieve an approxi-
mate solution. It appears that nodal velocities are an appropriate measure
of error for usage in the above iteration-scheme, and this will be investi-
gated during the second year of research.

A disadvantage of the above FE method is that the iterative solution
of simultaneous equations is a slow process when there is a large number of
unknowns in the so-called bandwidth or wavefront. Furthermore, numerical
fluid-mechanics studies (see review in reference &) have shown that, for the
same number of unknowns, it takes longer to solve a system of super-elements
(so-called quadratic or cubic elements) than a larger system of linear
elements (such as used in the EPIC and DYNA3D programs). Conversely,
application of a few super-elements to solid mechanics problems7’B have
produced "quicker" solutions when the problem is properly formulated.**?
Therefore, a system consisting of a few judiciously selected super-elements
should provide '"quick" approximate solutions.

Historically, numerical solutions involving shaped-charge jet penetra-
tion necessitate a large number of zones or elements because of the small-

ness of
of mm).

(order of the penetrator-diameter) around the moving penetrator/target
interface. This poses a dilemma in that our '"few judiciously selected super-
elements'' cannot a Priori model this condition.

It
Figures

implementing the C and A process. First, we recognize that the vast
majority of most targets undergo linear behavior in lateral regions which
are on the order of several hole diameters away from the path of the
penetrator. Hence, these outer regions could be modeled using a few super-

A i Ml - B i M e 0 B Bt A S M o ada A e e i e g o e ng s ag 4 s o e gt ey

add the next non-linear term to the set of equations and repeat
step b

continue the above approach until all non-~linear terms have
been accounted for.

the user. Therefore, the user can do a trade-off between accuracy

the jet (order of mm) compared with the target thickness (hundreds
Furthermore, very large velocity-gradients occur in a small region

appears to the author that the following approach depicted in
3 through 7 offers a way around both the above dilemma, and for

"0. C. Zienkiewicz, THE FINITE ELEMENT METHOD IN ENGINEERING SCTENCE,
Cnapter 9, MeGraw-fill, London, 1871.

aL. J. Segerlind, APPLIED FINITE ELEMENT ANALYSIS, Chapters 14-16, Join
wWiley & Sons, Inc., New York, 1376.

Carey and 4. T. Oden, FINITE ELEMENTS: A SECOND COURSE, Voluwme II

2
<

G. F.
in the

Jew Jersey, 1983.

.

LT te e
W At e e,
P

e ol i d PRV

Texas Finite Element Series, Chapters I and I, Prentice-dall, Inec.,

13
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elements on either side of the penetrator-path. Furthermore, the algebraic
equations are essentially linear for the FE unknowns within these regions.
Secondly, the "inner" region along the path of the penetrator is the only
region for the highly non-linear C and A process. Hence, the non-linear
formulation is applied only to this "inner" region. Thirdly, the inner

and outer regions communicate only via the matching of velocities, -
tractions, temperature and heat-fluxes along the common interface (see
Figure 3). This matching must be done in an iterative fashion, but does
not have to be done at each time-step. Fourthly, the C and A process
progresses along the penetrator-path in some fashion with the penetrator/
target interface, and downstream material does not sense the penetration
process until an elastic or plastic stress-wave arrives (see Figure 4).
Figures 5 through 7 illustrate how inner super-elements become active, i.e.,
must be included in the simultaneous iterative solution, whereas other

inner super-elements become inactive,with the motion of the penetrator/
target interface. Note that this active/inactive process is exactly
analogous to the C and A process, and all iterative interfaces can be
analyzed by the same method.

Numerically, the above C and A process appears to offer several
advantages over current FE methodologies. First, a priori knowledge of
the initial location and material associated with each phantom super-
element allows the user to "turn-on" the appropriate non-linearities
within each element, which in general can differ from element to element.
This could permit a substantial savings in computational time.

Secondly, it is numerically faster to solve N sets of M number of
simultaneous equations associated with each super~element, than the NaM
simultaneous equations associated with all N super-elements. Since an
iterative solution must be obtained regardless of the number of simul-
taneous equations, minimal solution times should exist for certain choices
of N and M. Therefore, a trade-~off should exist between the number of
preselected phantom super-elements and the number of nodes associated with
each super-element.

Thirdly, since the outer super-elements and each inner super-element
is analyzed or "processed' separately, considerably "faster" solutions are
possible by using computers with multiprocessors. For example, a co-
processor or a parallel processor could be used to run the inner and outer
regions, which "talk to each other" after s preselected number of
iterations or time-steps. This may be extremely important in the near
tuture since the next generation of 'super computers' are purported to be
based upon a large number of interconnected processors.
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III. DEVELOPMENT OF THE PHYSICAL MODEL

Now that the flavor of the t>lution scheme has been presented, we
can progress to the assumptions associated with the selected physical model.
The corresponding self-consistent set of equations must include the
conservation laws of physics and chemistry, the basic principals of
thermodynamics and materials science, and the basic postulates of con-
tinuum mechanics. Presently, the model will assume no chemical reactions
and hence chemical considerations will be neglected. Also, the model
neglects all electromagnetic forces and energy, contains no failure or
fracture criteria, nor any consideration of solution bifurcations, i.e.,
buckling phenomena is not considered explicicly.

As indicated in Figure 1, both the global inertial coordinate and the
attached local, fixed, coordinate systems are chosen to be rectangular
Cartesian coordinates. Hence, all the equations will be written and derived
with respect to these coordinates. Application to other types of coordin-
ate systems can be done using the rules of calculus transformations. Note
that, while the local coordinate system is attached to some material point
in the system which moves globally according to the position vector R(t),
the direction of the axes always corresponds to the direction of the global
axes.

Also attached to the material system is a curvilinear material

{sc-called Lagrangian) coordinate system initially parallel to the
rectangular Cartesian system, but which deforms with the material. Fur-
thermore, each super-element has its own local coordinate svstem used for
calculations. After each calculatinn, the actual location of the toral

material svstem can be obtained bv mapping back to the inertial
coordinate system, and this yields the updated nodal locatioms. It

is this mapping to the actual location that permits one to observe any
possible penetrator/target interactions away from the frontal interface.

Using these coordinates and including the possibility of phase
transitions, conservation of mass yields the equation presented in
Appendix A. This equation is satisfied (within the accuracy of the mesh
or grid) by using the updated Lagrangian coordinates and the previously
discussed C and A approach.

In order to derive the remaining equations, we must decide on the
magnitude of the deformations that occur between time-steps. The usual
infinitesimal form of the conservation equations requires extremely
small time-steps for a penetration problem, i.e., on the order of

10-l to 10" us. This would require a large amount of CPU time for a FE

solution to a realistic problem. Therefore, since relatively large time-
steps (order of usec) are desirable, finite deformations are quite
possible between time-steps. Hence, large deformation theorle will be
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utilized in the current model and introduces geometric sources of non-
linearity. However, the advantage of large deformation theory is that

the geometric deformations do not force one to use small time-steps in the
solution. Rather, the size of the time steps is dictated by either:

a. the time variation of the boundary conditions, or b. the user's
interest in short time behavior, i.e., "'shock propagation."

Several assumptions must be introduced into the large deformation
theory in order to simplify the elemental form of the conservation
equations. These assumptions involve the size of the extensions and
shears that occur between the time steps. This size is assumed to be
finite but small compared to unity and one radian respectively. Note
that the theory considers material rotations which could be larger than
either the extensions or the shears. Previous hydrocode and experimental
observations indicate that a material ''particle'" can undergo considerably
large rotations at the target/penetrator interface region, and hence no
limitations* were appliied to the material rotations. The author believes
that the extension and shear assumptions are not severely limiting
because, for a stretching rod, these assumptions apply as long as the
tollowing two conditions** are satisfied:

R t
Small extensions > I << 1
OB
3/2

i A 3

1o+ At At 2 .
Small shears - E——J x 1 - <3

0B 0B
where At = time-step size,
t = time of the calculation as measured from the jet-formation time.

0B

Using the above assumptions, the linear momentum equation takes the
form given in Appendix B. The body force terms are written in the expanded
form since this permits a visual interpretation of the various contrib-
utions, and is easier to write in FORTRAN. Also, the inertial (body)
forces includes all forms associated with rotational and translational
motion of the local coordinate system.

Note that, if the body forces or surface tractions are either uniform
or symmetrical with respect to the local coordinate system, a geometric
svmmetry with respect to the same axis will vield a zero contribution tfor

*Rotations w of the vectors are considered cduring time-steps, but their

.ol

- magnitudes must be such that tan[w(c +at) - w(t)] = [w(t + 3ty - Lw(t);.
h':"

o o

5 *% These conditions stem from the assumption that the radial displacement
‘3 rate at the interface is of the same order as the rate of penetration.
Ei Also it is assumed that the Cauchy stress is approximately equal to the
by first Piola-Kirchhoff stress.




the corresponding volume or surface integral. Also, many of the
volumetric integrals will yield geometric terms, <uch as the polar
moments of inertia, when the other integrands are constant over the
volume.

Appendix C gives the development of the three equations associated
with the conservation of angular momentum. Note that, whereas the point-
wise form of the angular momentum equations are identically satisfied when-
ever the linear momentum equations are satisfied, the weighted integral form
requires additional symmetry conditions. Therefore, these angular momentum
equations could be satisfied by either assuming that these symmetry
conditions are fulfilled by the deformation conditions, or, by solving for
the additional unknowns.

The last conservation equation involves energy and is developed in

Appendix D. Because of the assumed general behavior, this equation is
quite complex even though only one new variable (temperature) is introduced.
Furthermore, since stored thermal energy is required, some form of thermo-
dynamic equation-of-state (hereafter denoted as EOS) must be selected.
Since temperature is the critical variable in the C and A process, all
thermal-mechanical properties will be assumed to be known functions of
temperature T. Refereuaces 11-13 give some typical types of analytical
functions used for these properties.

Several new terms which appear in the energy equation are the strains
€ij> the heat sources Q per unit mass, and tue volume fractions fp and fg,.

Because of the possibility of large deformations, tue strain-displacement
(Ui, Uj, Uk) relationship is

U, ?U, U U
573 G et e ) )

where i, j, k = 1, 2, 3 and repeated indices indicates summation. The heat
source term is associated with the latent heats corresponding to thermo-
dynamic and polymorphic phase-changes within the material. Most of these
latent heats can be obtained from solid-state reference books. The volume
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5. X. Godunov, A. F. Demchuk, N. S. Kczin and V.
Focrmulas for Maxwell Viscosity of Certain Metals
Strain Intenstty and Temperature,” tramsiaved 1
Drikiadnot Meknaniki < Teknicheskol Fiziki [1974
cory., 197¢€.
10 ‘ . .
3. B, Duvall and D. P. Dandekar, "Theoru of Zouations o] Staze: Llistio-
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N Y. 3. Callenm, THERMODYNAMICS, Aprendices D and £, < oim Wilcu ind Sons,
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fractions fp and f, refer to the percentage of "plastic" work that is
irreversible and reversible, with many processes yielding fo of only a few
percent.? However, this small percentage may be important in some problems.

The two remaining items that must be selected are the specific forms
of the EOS, and the constitutive equation that relates stress Oij to the
other variables.

A. Thermodynamic Equations of State

It appears that most hydrocodes use an explicit volume-dependent form
of the solid EOS, such as LASL's equationl®

P(p) = PH(p) + YgP (Internal Energy - IH) (2)

where

P.(o) = 0C2X/ (1 - X(s-1)}°,

US = Shock Velocity = C + SUP,
Up = particle velocity = vy,
X = (/o) - 1,
YS = Crineisen coefficient,
1 cX 12 . . .
I? = E-{257637:§§; » C = Intercept of the bs versus Up data-line,

T
it

density in the deformed state, P(p) = pressure,

[$)

]

reference density, S = slope of the U_ versus Up data-line.

Conversely, many of the elastic-plastic codes use a Mie~Gruneisen or
Cristescu form!® which explicitly includes the influence of temperature,
i.e.,

9
v 2 A
PG,T) = Pu(p) + Hy(p,T) + H (0)T (3)

* - .. .. - o Y Pt b LIRS Aol ST R Tl LRI R PR e B e e - A
TOF HEzvicw omd AL AL Amszen, FLEUID NECEANITTE, A Zacl o liiarin, LO8
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L. Trigssaou, DZUANIZ FLASTICITY, Crars 5, 10, NOYTA-ZOL QR TUlL TSNl
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where HO(Q,T) and Hl(p) depend upon the atomic modell®=13 ysed to represent

the solid state.

Our EOS must include other phases, and presently there appears to be
two choices for multi-thermodynamic phase EOS: the Tillotson!’ interpolation
equation, or one of the various forms of the GRAY!® equation. Tillotson's
equation is a two-phase equation based upon a3 Thomas-Fermi-Dirac atcmic model
(five parameters) for a solid (condensed) state, and the vaporized (isentro-
pically expanded) material is represented by a two-parameter equation which
interpolates between the solid state and an ideal gas. GRAY is a three-
phase equation for metals based upon a variety of physical models and inter-
polation equations (see review in reference 19).

Neither the GRAY nor the Tillotson equations contain polymorphic phase-
changes * (But the author believes that these changes can be included by
using a dual Hugoniot for Pl(p), with a possible volume discontinuity
between the dual Hugoniot relations.) Cristescu discusses this behavior in
reference 13, and some specific examples will be considered during the
research effort of the second vear.

Since BRL personnel have used the GRAY equation, and have already
generated the critical thermodynamic constants assoc1ated with the liquid-
vapor, mixed-phase region for seventeen materials, 13 the author selected the
GRAY form of the EOS. After reviewing the derivations contained in reference
19, it appears that there are two "implicit'" assumptions contained within
the equations for the solid region. These assumptions are: a. the initial
temperature of the solid is considerably above the Debve temperature Ty, and
b. the energy depends only on the thermal and volumetric stored energies.
Since T could be well above room temperature (see discussion in reference
11) the first assumption is removed from the solid EOS by replacing the "3R

5. ., . .
J. ae Beaumont snd J. yeyaonze, Vaporizction of Uraniwnm ajte c
Loading," Proceedings of the Fifth Symposiwm (*,Verwaszcnap) on Je
Pasadena, Caiiformiz, ACR-184-, pp 547-uau, dugust 13-21, 1370.

'3
<)
NG

J. d. Tillotson, "Metal Equations of State for Hyrerveicceity Impact,'
General Atomic Repcrt GA-3216, July 1962.

9. - - . - o e .

“°Z. 3. Royce, "GRAY, A Three-Phase Equation of State for Metals,' Lawrernce
Zivermore Labcra:cr/ JCRL=-EIIZI, Serzemper 1371.

F. lucetera
cne GRAL Egquation
Technical Reucrt

*The HEMP USER's MANUAL, Lawrence Livermore Laboratory report UCRL-31079
Rev. 1, Dec 1973, indicates a "five-part multiphase equation of state,’
which appears to be for poussible polvmorphic pnase-changes since the
"phases” are determined ornlv bv the range of the density change X.
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r-- terms by the more general expression [ cv(T)dT/WA

. o
: where,

. cv(T) = Temperature-dependent coefficient of specific heat for T=< Tp
- -
L R’ = Universal Gas Constant R/Molecular weight Wa

' Limit ¢ (T) = 3R.

\ \'4

T > Tp

f: The second assumption can be avoided by not using the Grineisen-like
O equation with parameter T(T,V),* but rather by using the Hugoniot defini-
L tions (Equations 5, 6, 7 and 9 in reference 19) with the above modified
: solid EOS. Therefore, the solid EOS takes the following form,

" T ¢ 2
& = Sv(m) at , 6'12
N Es(Top) = Eqy () + Egy + [ 3 * 3

aa o A

‘\:‘ 'S = -
c P(T,2) = Pu(o) [1- vy (WX/2] + v (Vo Ey (o)

|
X T c
: oy (e ; XDET L g2
t =1 W 2 e
N o} A
S
}‘ where

gi EOH = assumed by the present aufhor to be the linear elastic

T
L bulk-behavior at T,, i.e., 2x(T.) /[ a(T)dT/P(T,)>
56 D D o D
ii k (Tp) = elastic bulk-modulus coefficient,

.. a(T) = unidirectional coefficient of thermal expansion,

i EOl(p) = Royce's approximation-function

S 2 2 2

) c_ X S S Aoy w2

2 2 (1- 3 + V..

: 2 (1-5%) {1+3X+ =@ _Z_)‘{ b+ E, (142X),
u

o, Ao = Lattice constant,

¥ = K - =00

. E, = Egy - Eg (T=0°K, o), ] |
Do (reference 19 uses -Tp {3x8.134%1072+150G /Wa1),
i) :
1%
.,., *

It appears that this term is never used in reference 19, but merelyv

'i represents a formal correction term to a Gruneisen-like EOS for a solid.




G' = atomic-weight scaled electronic energy coefficient,
= 72 '
m Ne K R /ZEf,

ge = WAG' »
K = Boltzmann's constant,
No = number of free electrons,

E¢ = Fermi Energy,
= 26 (Ng p,/Wa)2/3,
Yg(V) = linear volume-dependent Griineisen coefficient,

Y, = electronic gamma (reference 19 assumes Yo = 2/3
whereas references 15 and 16 assume Yo = L).

With the above modified form of the solid EOS, we can use the remaining

GRAY phase-~equations,

a. Two-Phase Melt Region

B, (T,p) ES(T,p) + U{T~ v(AT/2)} (AS'~0.143R'")*

L LAY 3
P (T,p) PS(T,p) + vATmp(AS 0.143R")

where,
AS' = entropy of melting/wA,

v = {T-T (0)IAT, (o) - T (o)},

AT = T, (p) - Tg(p),
T = {Ts(o) + T (p)}/2,
Ts(p) = solidus temperature,
Tl(p) = liquidus temperature,

X = coefficient of the Lindemann Law,

= d(1In Tm)/d(ln p)

*
In reference 19, the A4S and R terms appear without the 'primes,” but

the primed quantities are necessary for extrapolation to ;he
solid state, and because of the stated 'scaled entropy of melting."

L
‘::
.!
}l'
r.
e
. 26
;
'
)
)
v
i
7
PR Y e e e - . ..
Wi e g LT, . T e, )
e LT e e e e e e e s R R A S e
L".t._u‘L-A{_L' e '-_!—',_‘\."-'a_“":".fl".. e o




bt iet St Mal S i e Aait et A il At i e A kA B BAa e M i A e e Al -8 -al e oalcal R ah Sah unh el AnirAnd mhded- B i s e d RSl 0o o b L0 o o .-vT

b. Liquid-Phase Region
EQ(T,O) = Eg(T,p) + Tg 4S' + 0.143R' AT/2

+ 3R' T A(T),

- o

I~

Py(T,p) = Pg(T,e) + ATy p4S' + gg’k pTp A(T),
¢ 1

where,

A(T) = In{(QT/7Tg) + 1} - (1+3)1n(1l+a)
- 3((T/Ty) - 1}

g = fitting parameter for liquid specific heat; reference 19
uses & = 0.1.

c. Vapor-Phase Region

E,(T.0) = Eg(T,p) + IR'T/2 = 2R'T%p{(2-n) /(1-m)3} avy, - ayp,

dT
P (T,p) = R'To{(1+n+n2-n?)/ (1-n)3}- aye?,
where,
n = oVy (D),
Vb = vapor-exclusion volume,
ay = coefficienc of the attractive potential,
dVy/dT = -Vy/(4T).

Obviously, the above equations of state cannot be used until a large
amount of information is known about a material. Also reference 19 presents
a program for estimating the critical constants associated with the liquid-
vapor mixed-phase regions, and these constants are required in order to use
the previous equations for a general mixed-phase condition.

We now need to develop a constitutive equation which is applicable to
both solid and fluid behavior.
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B. Constitutive Equation for '"Hygrosteric' Materials

An excellent review of constitutive equations for "plastic" solid-
behavior is given in reference 15. However, irrespective?? of the temper-
ature dependency of the material parameters, these equations do not take
the classical Newton-Cauchy-Poisson fluid-equation form

o = -pl + A(tr A)T + 2u¢ A (4)

where,

0 = stress tensor,

>

= identity matrix,

p = hydrostatic pressure,

>

- S =1 5
A = matrix with components Aij = 2(8Vi/3Xj + BVj/oxi),

A,uf = material parameters.

This poses a problem since we would like a constitutive equation
which continuocusly maps the material behavior between the solid and liquid
states. Noll?! discusses the concept of a 'hygrosteric" material which can
take either solid or fluid-like behaviors. Depending upon the functional
assumptions, the hygrosteric constitutive equation for an isotropic
materjial can be written as a general function?! of the strain invariants
(I;, Iz and I3), and various powers of (tr A). Ang general function of
this form satisfies all the restrictive conditions?%-22 associated with
the mathematical consistency of continuum mechanics. Also, an acceptable
form of the constitutive equation involves the decomposition of stress

~

¢ into a volumetric component pI, and the so-called "extra' stresses S.

O0f all the equations23 that satisfy the above general forms, the
author selected the simplest, i.e.,

Gij = {-P(T,p) + x(T)(vI3-1)* - 3k (T)a(T) (T-Tp) } 615 + Sj &)
*
ngor small strains, (/T§—1)+611+822+533E£kk

C. Iruesdell, "Elasticity and Fluid Dynamics," . Rational Mechanics
and Analysis, 1, 126-262, 1952, and Vol 2, §33-611, 1353.

Walter Noil, "On the Continutity of the Solid and Fiuid States," .
Rational Mechanics and Analysis, 4, 3-81, 1955.
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where the {...} terms refer to the total volumetric component, and P(T,p)
represents the EOS pressure component. Equation (5) passes in the limit
(T*Ti(o)) to Equation (4) if the extra, or deviatoric, stresses S1j depend

upon the velocity gradient Ajj when T>Ty(p). This can be accomplished by
using a modification of Perzyna's constitutive equationszufor rate-sensitive

materials and Zienkiewicz and co-workers used this approach in references
3 and 25.

Perzyna introduced a plasticity function ¢(F) which satisfies the
conditions :

&(F) = 0 when F<O0

$(F) # 0 when F>0 (6)
where F = Prager's dynamic overstress-function
- (VIS(Z)nm) -1
Is(z) = second invariant of the extra stress-tensor

= 1
= S.. S..
4 ij i3’

K(T) ="yield stress'in simple shear.

Note that K(T) can also be a function of hydrostatic pressure, effective
2
deviatoric strain Ie( ) = 4 ej j eij,* and/or effective deviatoric strain-

(2) _,

rate Ié = ké. ., e, ..

Cristescu and Predeleanu!5 manipulated Perzyna's equations into the

following form for loading conditions ({oij €45 + T 3¢/5T} > 0) and an

"elastic viscoplastic" body,

*
By definition, ejj = €. - Sij (VI3 - 1)/3.

24 . . . n . .
P. Perzyna, "The Constitutive Equation jor Rate Sensitive Plastic

.

L
Maverials," Quarterly Aopl. M ath., XX, No. 4, 321-322, 19¢3.
0 lienwiewizz, P. . Jain and E. Onate, "Flow of S
Forming and Extrusion: Some Aspects of Numertcal Solu
o l1ids Struciures, 14, 15-38, 1978.
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= (L+6,0% (Gpley, - ey /B (7)
+n (&, -8 E) if J > K(T)?
eff  ij ij ’
where G = shear modulus,

2

*
=% {1 + c;T/c)sij - (1 + aij) cTeij} ,

ejy = éij/(l + Gij)*G,

. X 2
eijE = values of e55 satisfying J = K(T)*,
GT = strain~hardening shear modulus

and viscosity n is a non-linear function of stress, strain, strain-

eff
rate and material properties. For unloading, the stresses must satisfy

the inequality (Gijeij + T3¢/3T < 0), whereas relaxation implies that
(Gijeij + T546/3T = 0).

Equation (7) satisfies both the solid and fluid equations if the
effective viscosity is written (assuming a rule-of-mixtures) as,

n =fn+fn__‘/i__,
eff £'f s's K(T)e (D) (8)

where ff volume fraction of fluid,

f = volume fraction of solid,
F o= (0/0) -1,

ng = fluid-viscosity,?®

which can be a function of temperature,

o . 2 , , .
effective deviation strain Ie( ) and effective deviatoric
. 2
strain-rate Ié( ),
n_ = solid-viscosity,11 which can be a function of temperature

and the strain-hardening function J,

* .
Because of the strain ¢,, definitiom, (1 + Gij) appears instead of the
usual factor of 2.

5. L. Simkhovich, A. S. Romanov, and L. I. Ionochkina, "Hydrolunirc2
Jezbility of a Gemeralized Nonlinear Visco-Plastic Fiutd inaer r.ane
Sradient Flow," translated ;rom Imshenemo-Fizichesiii Zhumal, <3, M. I,
F0-84, 1333, Plenum Publiching Corp., [384.

30




Y Nab Al BENL AN

YRR T N
PR T B R

S ame

g . i avud g v b - S g g hran B Al e ana B o Aadanty S~ b faen b0 St b i e 2 e B o

limit K(T) -+ O,

T > T,(p)

limit {fs/(K(T)tb(F))} -0
T~T,()

Note that the above second limit is satisfied for any of the non-linear
® (F~F) functions proposed by Perzyna. Also, constitutive equation (7)
provides for both rate-independent and rate-dependent material behavior.
Hence, with an appropriate selection of material constants,?’ one should
be able to approximate both instantaneous and non-instantaneous wave-
propagation phenomena.15

Now that all the items contained within the energy equation have been

defined, we can proceed with the development of the numerical solution
scheme.

IV. DEVELOPMENT OF THE LINEAR MOMENTUM EQUATION FOR THE NUMERICAL SOLUTION

As previously discussed, we want to formulate the basic equations with
respect to the FE approximation. This approximation involves discretizing
the geometry (spatial variables) to obtain a set of time-dependent equations,
and then solving this set using some other approximation.

A. Discretization of the Spatial Variables

In order to discretize the linear momentum equation (B.4) the previous
strain-displacement and constitutive equations must be introduced for their
corresponding terms. Furthermore, since the deviatoric behavior changes
when J>K(T)2, two different sets of equations must be developed; one for
the elastic behavior and another for the fluid-type of behavior.

1. Elastic Behavior

The stress vectors [oi] can be written as the following for i =1, 2
and 3 respectively,

[5:] = [0, ][e] -

o Ou
~~
O
~

to
~)

3. 3Bhushan and ¥. E. Jahsman, "Trozagation of Weak Waves tn Elastic-
Plastic and Elastio-Viscoriastic Solids witn Incerjazes," I1nt. J
Solids Structures, 14, 39-81, 15713.
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(021 = [Dy,1le]l -|p (10)

(03] = [p_1le] -{0 (11) B

p.

where p = P(T,p) + 3K(T)a(T)(T-Tp),

[0,1" =f(x+26) A 2 0 0 o
0 0 0 G 0 0} ,
0 0 00 G O
[ny]* = r0 0 0 G 0 O
A (x+26) A 0 0 0],
lo 0 00 0 G
[Dz]* =T0 0 O 0 G 0
o 0 0 0 0 G |},
Y32 A (M26) 0 0 O
A = VE/(14v) (1-2Vv),
v = Poisson's ratio,

Young's modulus,

E
[e] <[ 1%,

€ € € £ E €
XX yyY 2z Xy Xz yz

Note that the modulus can be a function of strain, i.e., non-linear, as long
as_there is no hysteresis upon unloading. Also, the bulk behavior pgIK(T)
(VT;—I) has been included into the first matrix-product of equations (9)
through (11).

Equation (1) can be written in matrix form as the following,

(e] = [L][u] + [nrul /2 (12)

*
For anisotropic elastic behavior, these matrices can be rewritten in
terms of the elastic coefficients.
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where [L] =} 3/3x 0 0 .
0 3/3y 0
0 0 3/3z
5/3v 3/5x
3/5z2 0 ) 3/5x
| o 3oz 3/3y
(vl = [ (oxIluDl (suxlfuD |,
GuAteb (it
! T )
(Ivex]fuD . ([ey]fuD)
((vexJfuD o (vez]fu])
| ([aey]lud) ™ ([vez]fud)
[Nx] = (3/3%) [1],
(zeyl = (3/3y) [1],
[xrz] = (3/32) [1],

(1]
[u]

3x3 Identity matrix,
Lu,v,w]T.

(ol - A T W W Y W WY W WY W YW T

The last remaining step is to relate the displacements [U] to the
material velocities [v] using the kinematic relationship,

) t.= X

(uv] = 1 Vs (x,v,2,7) + g‘(T)de
TV, (x,y,2,7) + g (T)1d
4%‘ 2(X,7,2,7 gy T)}dT

-t =
J A X N + T)dr
:01V3(\,Y,Z T) gz( )fd

where Vi =4, v, w respectively for i

+ ug(xX.v,z)
+ valx,v,z)

+ wo(x,y,z)

=1, 2, 3 ug, vg and wy represent

the initial deformation at time tg and 8. gy and gz represent the time-

dependent motion associated with R(t)

Using the abuve equations in the

and w(t).

linear momentum equation (B.+), and

rearranging all the non-linear terms to the right-hand side oif the ¢quation,
vields the following non-linear integral-differential equation,

)[ GY o I+ (0,) 4+ 21D, D)

X v 3z
‘J 7

Jde

[L][r]dVol
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= _/v oW [Fgldvol ~/vow [V] avol +/w (n](sTlds

S

+ /[<p WG ¢ 3wl" dvel +/w [V1e[[V1ds
i

IX 3y 3z Sp (1)
11
-z [viwy], (14)
K=1
where NL(1) =/ sw [p_J[~ul dvol,
X X
v
NL(2) =/ivg [p_1[~Lu] avol,
Y Y
\)
¥L(3) =/ W [p,][NLu] dvol,
3z

NL(4) =/gg (310, 1(r]{u] avor,

X
\Y
NL(3) =/_3w_ (allp_]{L](u] dvel,
3y y
\Y
L(6) = { w [allp J[L][v] avol,
v = :
NL(7) = —/[K]Up aW) (p 3W) (p 3w) }Tdvol,
v IxX 3y Sz

NL(8) = -/Sw[K][n][r]ds,

b
.- NL(9) =/ 3w [allp ]{~Lu] dvol,

o Ix

o v

,Q NL(10) =/ﬂ [X][Dy][NLU] dvol,

o 5y

vi» v

[ NL(11) =/_»g [allp,][NLu] dvol.

:‘:_: VBZ

L' .

v Note that, even when all the non~linear terms [NL] are identically zero,
:fj equation (l14) is still implicitly non-linear because the pressure term p
5}: depends upon the density p, which in turn depends upon the deformations [U]
it through the relationship o = QO/YTE.
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Based upon the above equation, the finite-element spatial discretization
is developed in Appendix E-1. We can now consider the fluid-type of behavior.

2. Fluid-Type Behavior

For this case, previous equations (12) and (13) are still valid, and
only the stress vectors [Gi] must be redefined. Furthermore, this definition
depends upon whether the material is undergoing loading, unloading, or
relaxation. For unloading, one forces the stress and strain to follow some
function of the elastic slope (usually the so-called initial tangent-modulus
Ey) up to some predefined set of stress and strains, after which the same
constitutive equations are used. Therefore, this can be readily handled by
the logic of the program and doesn't require a new set of equations. The
relaxation behavior is predicted by solving a specific differential equation,
and hence requires its own solution scheme. However, this scheme will not
be developed for the current project. Therefore, only the specific set of
equations associated with loading will be developed for the fluid-type of
behavior.

The corresponding stress vectors [ci] can be written as,

[0;] = [ox1cle] - [£D)

E -(p+pef (15)
(ETax]([e] - [¢°H - | © ,

+

[o2] = [evl(le] - [ED) i
' o 1, (16) |

(erav]([e] - [&°1) - (p¥pe)

+

[o3] = [ez]([e] - [ED)

[}

. [0 ], (17)
+ [eraz](fe]l - [e"Dh - | o
_(p+pe)J
where (GX] = [(26p) 0 0 0 o0 07,
0 0 0 G 0 O

: L 0 0 0 0 Gp O
- 1T

1 eyl =T.0 0 0 G 0 o0 |,
- 0 (267) 0 0

: L O 0 0 GT
9
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(6z] = o 0o o0 0 G 0},
0o 0 0 o0 Gy
0 (26p) 0 0
= 9 1
[ETAx] (2n44) O 0 0 0 01,
0 0 Q neff 0 0
Q 0 0 e neff 0
ETAY] = =
[ ETAY] 0 0 0 nee O 0o )
0 (2n ff) 0 0 0 0
0 0 0 0 0 neff_
T - =
[ETAZ] 0 0 0 0 ngee O b
0 0 0 0 0 neff
7
0 0 (-neff) 0 0 0 i
ch o r- ) ] T
(el = (e, &vr €100 &y Sp eyz] ,
Ev _r E E E E E E T
[e ] = [e‘(xy YY’ ZZ’ exy’ XZ’ eyz] ,
and
(e8] = [ef,, 0,0 ér,, enyn ery. 65,0

Note that the individual terms e?j and é?j are determined from the

E ; previous definitions.

;‘."-‘: The deviatoric strain-rates é,, are related to the strain-rates &,
- . 1] 1]
o via,

Y

9= (6] =(e]-(ooo0f¢f]” (18)
;“?-: where f = 1/30/T3-1) and f = 3/%t. The term VI3 is the determinant of the
matrix [A], and

;., (1+43u/3x) O 0 ( 0 )(3u/3y)(3u/32)

A 1= o aswiy o |+ [owan o )evs (19)
NN 0 0 (1+%w/5z) (3w/3x) (aw/3v)( 0 )
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3 _(VI3) =!
Yy ?

Qs

i
i
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1
i
[

where the order
used for [U].

The strain-rate matrix [é] is given by the following equation,

[¢] = [LI[v] + [wLu] (21)
where [NLU] = 3u avx v av W avz
k1 |26 St ot )
3X 93X 3X 3X 3X 3x
R v v v v 3
QAU 3 X L3V Y  3W)3 2y H3U3 X, VoY, oW 2
Y 3y 3y oy 0¥ ¥ a2 52 32 52 32 52
v, v v R v R
AF A4 WX 3y Vo V3y 3z ¥, W3z,
53X 5Y X 3Y 53X ay 3X Y RS 3y 3IX oY
v v v v v A
(OX9_“+£.._§+_3_Y_ .3l+_3_V§_Z+a_z @.‘L’.+_ﬂaz)
3x Jz IX 3z X 32z 3x 3z 3% g9z X 92
v v v v oV vV 1T
(§ X 34, 3v3ax 3y 9v,3vidy 3z w gg 3 Z)
oz dy 9z 3y 9z dy 9z ay 02 ay oz

Now, using equations (15) through (21) in equation (B.4) and manipula-
ting terms yields the following equation,

IxX
v

= _/v_a,; (F3]

+4[((p+pé)

+/wmo[

Sb(r)

/ aw [ETAX] + aw [ETAY] + ow [ETAz]) [L][V] dvol

L't A AR ars sk Sie AR Al il abl ate aih g T T R

Al e Ral Jhaft Sak | -v_-w’v-_-wp—yT

tive of this determinant can be written as the following

3Vx an 3VX , (20)

X 3y dz

3V 3V v
y y

Ix dy oz

W WV Y
Z

3 3y oz

of differentiation was interchanged and equation (13) was

3y 3z

dvol -/ oW [V] dvol +/w [n][sT] ds
v S T

3W ((p+pg) W) ((p+pe)aW) ™ dvol

3X 3y o2z

a][v] ds. - /(_"aﬁ {cx] + 3w [ov] (22)
V ax 3y
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+ %E (6z]) ([L]{u] - [H] - [eE]) dvol

+;/1§E (ETax] + 3w [ETAY] + 3W [ETAZ])([éE] + [#]) dvol
Ix ay 3z

v

-
“~

= -2 [NLF(K)],
K=1

where NLF(1l) =. oW [ex]INLU] dVo1l,

Vax
NLF(2) =, %H [cY][NLU] dvol,
v Y
NLF(3) =, 3W [cz][NLU] dvol,
Y oz
NLF(4) =, %g [Etax](~LU] dvol,
v
NLF(5) =. 3w [ETAY][NLU] dvol,
vy
NLE(6) =, %g (eTaz]{~LO] avol,
v
NLE() =, 24 (allex]([Llfu] - [H] - [eF1) avor,
v
NLF(8) = 2w [A)ev]((Lilv] - (] - [e"]) avor,
vy
NLF(9) =, 3w [3l{cz]([L][u] - [8] - ["]) avor,
‘Vaz
NLF(10) = - f [K][«pw«pe)g*m<<p+pe)§g)<<p+pe>g_w>]T dvol,
v X y z
NLF(11) = -;g[X] W [n][sT] ds,
NLF(12) = 3w [A]fex][~Lu] dvol,

’

o 3x

NLF(13) =, 3w [Al[{cy][NLU] dVol,
i
‘Y

NLF(14) = 3w [A][cz][NLU] dvol,

52

v
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NLF(15) =I_Jg (al(eTax]([Lllv] - [&f1) avou,
ax
v
NLF(16) = . aw [allETav]((LI(V] - [eE]) avo1,
vy
NLF17) = au [&)(eTaz] ([L1(V] - [&5)) avol,
v 3z
NLF(18) = - W [a)(eTax][#] avel,
Vax
NLF(19) = -, aw [al(ETav]{a] avol,
vy
NLF(20) = - 3w (al(Eraz](8] davol,
' Bz

NLF(21) = aw [al[eTax][nLU] dvol,

<\

NLF(22) = 3w (al[ETAY][NLU] dvVol,

y
NLF(23) =, 3w [Al[ETAZ][NLU] dVol,
VA

s{oo0o0¢f ],
and
<{ooo0¢f¢f£].
It should be noted that, even if all the NLF matrices were zero, equation
(22) is still a non-linear differential equation since the effective
viscosity depends upon the unknowns [v] and T. Equation (19) is spatially
discretized in Appendix E-2.

3. Discretization of the Temporal Variable

The equations given in Appendix E represent a set of non-linear, first
order, differential equations (actually an integral-differential equation

M

for the elastic behavior) for the unknown material velocities [—j Hence,
) an additional approximation must be introduced in order to obtain a solution.
N Numerous FE programs use finite-differences to obtain a discretization of
S the temporal variable, with the explicit forward-differences being the most
R) common technique. A few programs use the implicit Crank-Nicolson (central
2 difference) scheme, which has second-order accuracy with respect to trunca-
; tion errors in a linear problem. Baker“ uses the Method of Weighted
- Residuals (the FE method) and finds the approximate solutions to be as good,
- 39
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or better than, the solutions from the Crank-Nicolson method. A similar
observation was made in reference 28 based upon simple first and second

order equations. Therefore, the author decided to use the FE method for
the temporal discretization.

Depending upon the choice of the time-weighting function, a wide
variety of time-marching equations can be obtained, with some equations
yielding better approximations than others (see references 8 and 27). A
variety of final equations are presented in Appendix F, and during the
second year of research the author will attempt to ascertain which equations
yield the best approximation.

V. DEVELOPMENT OF THE ENERGY EQUATION
FOR THE NUMERICAL SOLUTION

The energy equation (D.4) must be rewritten in terms of the unknowns
(V] and T by using the EOS, strain-displacement, and constitutive equations.
Furthermore, the equation takes different forms depending upon both the
thermodynamic phase and the deviatoric stress behavior, i.e., whether

I<K(T)?, or »K(T)Z.
Hence, in order to spatially discretize equation (D.4), several new
terms must be explicitly developed. The first term involves the time

derivative of the thermal part of the EOS. This part can be written as
B(T) + BI(T,VTJ) T + BZ(T,/TB) Tz, where the B coefficients depend upon the

the thermodynamic phase of the material. Therefore, the time derivative

becomes,
3 (thermal part of EOS) = dB 3T + 3B) 3T T
ot dT 3t 3T ot

+3B) 3/I3 T+ B, 3T+ 3B, 3T T (23)

ayfs 3t at 3T dt

+ 3B, i, T2+232T£
BVTS ot ot

which has the general form of BI(T) + BZ(T) T.

O : - PN mpg s
0.2. Lienkiewtea and K. Morgan, FINITE ELEZMENTS AND APPRCXIMATZ(CW,
3

Chapter 7, John Wwiley and Sons, Ine., 1333.
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Another new term is the product [e] [Gij] of strain-rate and stress.

However, the strain-rate is discretized in Appendix E and this product can

be readily evaluated by using a slightly different form of equations (9) -

(11) and equations (15) - (17). Therefore, using equation (23) and the

same spatial and temporal discretizations as used in the linear momentum

equation, the energy equation can be fully discretized and this development -
is presented in Appendix G.
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VI SUMMARY

e

In order to develop a predictive 2-D model for penetration problems,
a self-consistent set of equations was developed. This set of equations
includes the concept of polymorphic and thermodynamic phase changes, and uses
a corrected BRL version of the GRAY three-phase equation-of-state. Since the
critical temperatures and pressures have already been established by the BRL
for 18 different metals, existing data and FORTRAN coding can be incorporated
~ into the new model. The polymorphic changes are incorporated via existing
Hugoniot data which exhibit volumetric discontinuity at various pressures.

_.
‘P LA A

-

.

B In addition to the equations-of-state, the new model also considers

A a constitutive equation involving both the scalar pressure (which is depend-

) ent upon volume change and temperature) and a deviatoric stress. This

(3 deviatoric stress contains both strain and strain-rate contributions with
temperature dependent material properties. Furthermore, this deviatoric

stress maps continuously between the solid and fluid (liquid and vapor)

states of the material. Also, the deviatoric stress depends upon the entire

history of the velocities, and hence the model could be applied to

temperature-dependent viscoelastic materials such as plastics.

Because of the thermodynamic phase-changes, the conservation of mass
equation is written in a global fashion to keep track of the mass contained
with the solid-liquid-vapor phases. Furthermore, mass can be convected out
o of one phase into another and the corresponding momentum and energy fluxes
N are considered in the conservation equatioms.

" Since large extensions and rotations of material can readily occur

. during a penetration process, the new model uses the strain-displacement
relationships which include the second-order terms. Also, the finite

deformation definition is used to represent volumetric changes within a

material. Lastly, to account for a possible reorientation of the stresses

during a time-step, the nonlinear forms of the linear and angular momentum

P equations are used.

N ol T B

an
.

o Since temperature is one of the essential unknowns, the energy equa-
- tion is introduced along with the possibility of conductive, convective and
radiation heat fluxes, internal heat generation due to latent heat and
chemical reactions, internal kinetic and stored strain energies, work of

- inertial forces and applied surface tractions, and internal irreversible

g work. Note that generalized inertial forces are included in all of the

- conservation equations so that problems involving bodies with translational
~ acceleration, and rotational velocities and accelerations, can be considered

for analysis.

- The above resulting set of differential and integral-differential equa-
tions are extremely nonlinear and are coupled together. Even when applied
to the idealized problem of a stretching, one-dimensional shaped-charge jet,
the resulting set of equations cannot be directly integrated. Hence, the
author introduced an approximation by discretizing the equations in both
time and space. This discretization involved the method of weighted residu-
als using piecewise continuous weighting and trial functions. This converts
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the original nonlinear differential equations into a set of nonlinear
algebraic equations which must be evaluated at each time-step. This
incremental solution involves algebraic recursion relationships which depend
upon the assumed weighting and trial functions. A wide variety of recursionm
relationships were derived and are presented in the appendices.

The beauty of this newly developed set of equations is that almost all
nonlinearities appear as separate entities within the equations. Hence, the
various nonlinear contributions may be successively "turned on" by either
the user or some sort of computer logic. Also, the user can specify regions
with different nonlinear contributions which the computer logic can bring
"in and out" for the analysis of the different regions. Furthermore, one,
two, and three dimensional contributions have been individually identified
along with their contribution to the order of the matrices. Therefore, the

2-D formulation can be readily updated to 3-D type of problems once the
appropriate functions and matrices are modified.

The last aspect of the new model is the '"creation and annihilation"
concept where the original geometric configuration is subdivided into a set
of super-elements, each of which are assumed to be quasi-independent. Each
super—element can have its own degree of nonlinearity, with the vast majority
of the super-elements being governed by the fully linearized momentum and
energy equations. Furthermore, each super-element has its own set of
discretized equations which must be solved in an incremental (and possibly
iteratively) fashion subject to its boundary conditions. However, many of
these boundary conditions correspond to the common interface between various
super-elements. At these common interfaces, the velocities, tractions,
temperatures and heat-flux must match between the interconnected super-
elements. Therefore, these interface conditions must be matched via an
iterative fashion at certain time-steps during the time interval. However,
it appears that this iterative C and A process will yield an approximate
solution faster than current FE or hydrodynamic approaches.
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coefficient of specific heat at constant volume,
elemental volume,
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o p, = «(T) (YT3-1)

Q = heat source or sink per unit mass,

q = specified heat-flux across a surface,

N o . . . :

R = global position vector with respect to inertial coordinates,
R' = Universal Gas Constant/Atomic weight,

a

r = Local position vector with respect to an attached rectangular
cartesian coordinate system,

Sp(t) = surface separating two different material phases at time t,
S,. = ijth component of the "extra" or deviatoric stress-tensor,
T = temperature OK,
T. = Debye temperature,
Tz(o) = liquidus temperature,
Ts(p) = solidus temperaturé,
t = time,
t, = initial time,
U_ = shock velocity,
U = particle velocity,
V(j) = volume of the j"—h sub-domain at the start of a time-step,
V. = material velocity in the ith direction,
W = Spatial Weighting function,
W, = Atomic weight,
WT = temporal weighting function,
a(T) = unidirectional coefficient of thermal expansion,
AT = Tg(o) - T, (),
At = time-step size,
= ijth component of the strain tensor,

n = effective material-viscosity, .
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elastic bulk~modulus coefficient,
Lame's constant,
mass density,
.. th
ij component of the stress tensor,
time-variable,
dimensionless time-variable,
Perzyna's plasticity function,
X . .th . . .
rotational velocity about the i axis of a coordinate systemn,
. .th .
angular acceleration about the i axis,
rotational angle,

a matrix with n-rows and m-columns.
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CONSERVATION OF MASS EQUATION
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Integrating over the volume V of any particular phase, and considering
possible phase-boundaries Sp, the mass conservation equation can be written

as,

/S(co)dVol -/6(c)dV01 - jf ( J(;v-ﬁds ydt (a.1)
to 5 (%)

(t v
v(e,) (t)
where p = mass density,
dVol = elemental volume,

ocoutward unit vector normal to the phase-boundary,
material velocity across the phase-boundary.

<|s

Note that the term inside the parentheses on the right hand side of the
equation (A.l) is the instantaneous mass-flux across the phase~boundary and
will be denoted as Mp(r). The total mass of the system is conserved and

can be written in the global sense as

Mo = /—pstol + /pldVol + ﬁvdVol (A.2)
v (e) v (®) v, ()

where Vs(t) volume of solid at time t,

Vz(t) = volume of liquid at time ¢,
Vv(t) = volume of vapor at time t,
Py = solid density, and
Pe = 1liquid density,
Py = vapor density.
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APPENDIX B

CONSERVATION OF LINEAR MOMENTUM EQUATIONS
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:,}} Based upon the assumptions discussed in the text, Novozhilov's linear

momentum equations can be written in the following elemental form,
SR
L - . .
-~ - ( Lo, ] 1 [o.]s +7a.) [
0 (2.1
ey s *
,_._;_., - pFBi =p 3Vi + (V430) ™ i=1,2,3
‘D . at at
AR - - -
P- 3 where V. =3 1+3 j+3 Kk,
S ax 3y 3z
; .:-_‘.
[Ai] = row matrix associated with the ith row of [A],
N T
2o [aA] ={ (143u/3x) (3u/3y) (3u/dz)
1}&_ (3v/3x) (1+3v/3y) (av/3z)
- L (3w/3x) (3w/3y) (1+dw/3z)
.
"::-' [Gi] = column matrix associated with ith
. - column of the stress matrix [o],
o LoJ Tl Oxx c’yx Tox |
¢ o} b} G
i Xy vy zy
"\-';4--' b 9%z cyz 922
-
:-;‘.'_-': u, v, w, = components of the displacement vector,
Ri = time derivative of the ith component of the global
@ position-vector R,
;\.‘;;‘. FBi = ith component of the inertial body-forces per unit mass,
"
\-‘:-}:. cij = ijth component of stress,
-{:Q-;: Vi =y, vorwfori=1, 2, 3 respectively.
P¥3

Applving the method of weighted residuals, equation (B.l) is multi-
T plied by some weighting function W(x,v,z), and the resulting equation is
«-_";-f integrated over the entire body, i.e.,

fw v-((a;] (o328 +(a] [o,i + {4l [o,IK)dvVol- fpm' - avol
- V(t) i- 71 i 2 i 3 Vit Bi

: :‘\ = JoW %idVol - WVi(pVini)dS R

¥(e) 5 (&)

*
&1. Term added bv the author to represent pessible mass-change within the
W elemental volume.
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where n, is the direction cosine for the ith spatial direction. The last
" term represents the linear momentum flux across the phase boundary, and
corresponds to the (V.3p/dt) term in equation (B.1) coupled with the con-
servation-of -mass equétlon in equation (A.l).

The first term in equation (B.2) has the form (f div u) which, from
calculus, equals (div (fu) - u-gradf), and the volume integral over div(fu)
can be replaced by a surface integral using the Gauss divergence theorem.
Using these facts yields the following weak-form of the weighted residuals,

- gty
R .

\ -~ - -

‘ - 14 : k) -
f.’:',j '/E[Ai] o 1 + Ca,] [oZJJ + [a,] [c3Jk) TWdVol

)

(4 v(t)
o
g - : : oy o

W([AiJ [01]1 + [Ai] [0’2]_] + [Ai] [03]k)-ndS (B.3)

- S(t)

A
‘g; -J/;WFBidVol =d/gw %%i dvol - ,/; vi(pvini)ds ,

V(L) v(t) S (t)

L P

) where S represents the surfaces where surface tractions tij are specified.
;i- The above three equations can be written as a single matrix equation of
N the following form,
b (3W [o,] + W [o,] + 3w [o.D)dVol = [cWw(F_"dvVol
l 1 2 3 B
3% ay 3z

v(t) vie)
b + fu 3 [Vidvol - fu([nl [ST] + [X] Cal [STD)dS (B.4)
p - at

&' v(t) (t)

(v [X1[5,] + au [&)[o,] + 3w [A] {o;D)dvol

e Ix 3y Jz

a vi(t)

l‘; i _ B

2 - ﬁo [V] [n] ([V]ds

- S (t

= p( )
b d

€
ff;
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where [n] =[n_ 00 (n] = [nxn n_],
z

IsT] ={(e,

(3u/3x) (3u/3y) (3u/3z)
(3v/3x) (3v/3y) (sv/32)
(dw/3x) (dw/3y) (3w/3z) |,

- N NV -0 v o)
Bi 8y 1 - By rj) + 2(‘.j v & \j) + R

+ (Qj rj + Qk rk) Ri - (Qj + Q

9
]

rotational velocity of local material coordinate system about
ith axis of the local fixed coordinate system,

o
[

angular acceleration about the ith axis,

ith component (rx, r, or rz) of the local position vector r.

r,

i

Note that the [A] term corresponds to finite rotation of the infini-

tesimal volume, and is usually assumed as zero. The first term in the body-
force F, expression is usually called the '"linear-acceleration" body-force,
the second term is the "coriolis" body-force, the third term is the classical
d'Alembert body-force, and the last two terms are associated with the
"centripetal' body-force.
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CONSERVATION OF ANGULAR MOMENTUM EQUATIONS
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The elemental form of the angular momentum equation is developed by
taking the cross product between the position vector R and the stress
vectors,and equating this to the time derivative of (Rx(m¢)). Multiplying
these products by the weighting function, using the fact that »xvs 0, R=R+r,
and, R is independent of dVol, integration over the volume vields three
equations of the following form,

ﬁ{rjv-ka (o Ji+0a, ] [o,2540a, ] {0,360

V(t)
-t 7 (a1 [o ]1+[A ] (o 13+[A 1 {o,20) }dVol c.1)
ﬁxa(r Ty Ty Fpg) Vol f _\tzk ;VJ)dVOl

v(t) v{t) ¢

minus the Weighted Angular Momentum Flux across phase boundaries,* plus one
vector equation of the form Rx left-hand-side minus right-hand-side of
equation (B.4). Therefore, when the linear momentum equation (B.4) is
satisfied, this vector equation is identically equal to zero.

Equation (C.l) can be rewritten using the calculus identitv involving
fdivu = div(fu)-u-gradf, with f=Wr, T and then using the Gauss divergence
theorem to vield,

ra 1 e, 1 0.3 } 1KY -5 7
J/szkJ [c1‘1+[Ak‘ L02‘J+[AkJ [03Jk) /(er)d\ol
)

v(t

> /rjwmk] (o, 10408, 1 [,23+(a,] [o,30) -6ds

S(t)
rijFBdeOI - rjwo%%k dVOl% (c.2)
V(t) v(t)

g ,[([A IECH i+[Aj] [02]3+[Aj] [c3jﬁ)-v(rkv«')dv°1
S(t)

r, w([A ] [01J1+'A ] (o, ~+[A 1 fo “k) -ndS

S(t)
- erWFB,dVol - rkWpéy. dVol +ith Component of Weighted Angular
! v Momentum flux = 0
/(t) v(t)

*Note that this quantity corresponds to the weighted volume-integral of the
rle+V+ixr)Mp¥ terms.
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Comparison of the terms within each bracket of equation (C.2) with the
linear momentum equations (B.3) shows that each term corresponds to a linear
momentum equation whose integrand is multiplied by a component of the
position vector. Obviously, if the linear momentum equation is satisfied at
all points within the body, then equations of the form of equation (C.2)
are also satisfied. However, the linear momentum equations are only satis-
fied in an integral sense, and therefore the angular momentum equations will
be automatically satisfied only for certain special situations:

a. the linear momentum integrand is independent of the position

component r,

b. the linear momentum integrand is symmetrical with respect to the
position component r,.
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The conservation of energyv is usually stated as the time-rate of change
of the internal energy being equal to the sum of the energy flux into the
system plus the time-rate of change of the heat added to the svystem and the
work done on the svstem. Based upon the assumptions mentioned in the text,
the components of the energyv equation for an elemental mass can be written
as

. --T
3 d = Vol - + 5 + F 1706, . ldvol
é%(heat added) pQdvol (kxxgg nx kyy%% ny kzzgg nz)dS+tp (e Lolj o

- (0.1)

3 (work done) = [sTIT [a]T (1] + [K1T){[f<]+zv;:+[f:x;j}ds (D.2)
at

3 (internal energy) = )3 (thermal energy)+fe[é]L [Oij] (D.3)
ot It

+3 (o CRIHIMT+axe]D)  (CRIHIVIHL&xET)

- dVol .
‘p ot 2

In equation (D.l), the Q term is positive for an exothermic heat source

per unit mass, Fourier's Law is assumed to hold for conductive heat flow,

T represents the absolute temperature, éij is the time-rate of change of the

ijth component of the strain, dij is the ijth component of the stress, and
fp is the volume fraction (OSfpS.l)for non~-elastic deformations. In
equation (D.2), Qis the rotational velocity-vector (Qf?¥95}+9/§), and in

equation (D.3), fe is the volume fraction (fe+fp=l) for elastic deformations.

Substituting the above definitions into the conservation of energy
equation, multiplying by a weighting function W, and integrating over the
entire spatial domain, yields the following equation,

W )03 (thermal part of EOS) + £ [¢]T (0..] ldvol
at e lJ

v(t)
:.," - T+ . . r"-wTJ_ :
- +{R] * weighted linear momentum Eq + [Q] * weighted angular momentum Eq
‘ .
+f 0T 200 + 00,7 + ulo,] + pw([F,] + (VD) + 2W(EI[o, 7+ (i,
: 3x 3y~ 3z Ix dy -
. ‘v"(t)

(D.4)
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3z

+awcx:[o3]}dv°1 7 %[n][ST] «[K)[alsT]
S(t)
[oij]) dVol + Wk 3T n + k 3T n + k_ 5T n_)dS
Mk Y Yy Y zEy ¢
vV(t) Sq(t)

-/ W(internal energy) (pV-n)dS.
Sp(t)

Note that the second and third terms in equation (D.4) are identically
zero when the weighted momentum equations are satisfied. The integrands of
the second and third integrals in equation (D.4) involve the linear momentum
equation post-multiplied by [V]T, and the last integral represents the
internal energy flux and includes all the terms involving f{p. The surface

Sq refers to the surfaces with specified heat-fluxes.
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L SPATIALLY DISCRETIZED LINEAR MOMENTUM EQUATION
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In order to apply the C and A process to the linear momentum, we must
discretize the region into a sub-set of NR regions or superelements. The
unknown [V] within each of these regions is approximated by a piece-wise
continuous function of the form,

- -
‘lx
V1, =[N, o 0 x,0 0 N, 0 o |1y
LJJ- ‘1 ~2 LNP v
lz
J
0 Nl 0 0 N2 0] see 0 NNP 0 ; (E.1)
0 0 N, 0 O N 0 0 N
2 > !
1 2 NP ‘NPX
VNPy
v
L NPE
where NP(j) = number of nodal points in the jth region,
Gik = the unknown value of the velocityv at the ith node and
in the kth direction,
Ni = an interpolation functicn in terms of the spatial

variables.

Hence, all the integrals in equations (l%) and (22) become a sum of
integrals over each region. Note that the spatial wvariation of the velocity
is now explicity given by the interpolation function.

Next, the weighting function is assumed to be approximated by a similar
piece-wise continuous function, with a polynomial N, (x,v,z) associated with
each node. Since equation (l4) must be satisfied for each discrete
weighting function Ni’ one obtains a set of NP(j)*NDOF simultaneous
equations for each region, where NDOF refers to the spatial degrees-of-
freedom. Note that in a full F.E. approximation, the solution for all the

unknown nodal values (DOF*%BNP(j)) must be solved simultaneously.
i=1

l. Elastic Behavior

The [LI{U] displacement matrix in equation (l4) can be written as,

—rm - t+d t_
(Liful = (L] N7 U, +HV, + f V. (0d (1)
NFGXNDOF NDOFXMT . MTx 1
(E.2)
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where HVi = history of the velocity at the ith node up to time t,
= C_

-/”vi<r)d<r>,
to

U, = initial nodal displacements at time t _, -

MT = NDOF' * NP(j),

At = size of the current time-step,

NFG = digit which depends upon the geometry of the problem being

solved.

Note that the only unknowns in equation (E.2) are the nodal velocities at
the current time-step (the initial nodal velocities must be specified at
time to).

The two remaining velocity terms are the [ NLU] and [A] matrices waich
can be written as,

ey = (o fexdT fexd fv) ] (E.3)
fvsT tevdt fev: [1v]
Tl ezt [ezl [1v]
T T,

vt [exit ofeyl [iv]
fvit Cexxt [ezd [1v]

T AT -
Cv]® Ccyl™ fcz] LIV]J 6x1
and [A] = 0 (UYIV) (UZIV) (E.4)
(VXIV) 0 (VZIV)
(WXIV) (WYIV) 0
t+At
where [IV] = U, +HY, +J/.Vi(T)dT
MTxl
t
. - -
- LMj=[§h0()ghoo “.g&Poﬂ
;i Ix IX 3% AT
3 [Vx] = [o aN] 00 N3 0 ... 0 N o]
2. 3% ax 'S
b;’
¢ =

In equation (E.1), NDOF was set to a value of 3.
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T [wx] = [003N; 003N, ... 003Nyp]
"o 9x ax X
{

[uz] = (34 00 3N, CO ... 3Nyp 0] ]
. daz az 3z

vzl = [0 3%, 00 3N, 0 ... 0 3N __ 0]
3 dz 3z SENP
‘ (wz] = [00 3N; 00 3N_ ... 00 3N__]
- 3z 322 EENP
Texl = |{ux]
L [vx]

o TWK

3o BN N

= eyl = |luy3

L U

o fvy]

' LYY e

¥ {czl = |(luz]
“ (vz

" Frem T

g R Y

vyiv = [uy] [1v],
i'. and

L;' WYIV = [WY] [IV]. ©Note that NDOF was set equal to its maximum value of
3 in the above equations.

. The remaining terms in equation (l4) that must be spatially discretized
L are those involving the weighting function W. Using the previously defined
‘fﬁ interpolation functions, the terms involving the weighting function become

' the following,

-vT ~ - -
‘J -! = r ‘ E‘
= (D, = Lyrexnor -Px-wporeysc® (2.3)
bl aw (1= [evT (o], (7.6)
o E A ’
- - 1= T T - c -
W p I="[cz) [p 7, (.7)
o 3z
L
¢ WiF. 3 = (n1T[F.T (E.8)
o “'B° T Y74 TB-NDOFxL’
o
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w vl = (N)T ON) (V3

MTx1 (E.9)
W [n](sT] = [.\I]T (n](sT] (E.10)
and _ T =
W Lve = [N] [N][V]M'rxl (E.11) B
where [N] = N, 000 N, 0 0 Nyp 0
0 %0 0 N,0 ... 0 Nyp O
0 0 N 0 0 N, 0 0 N

3xMT

Equations (E.l) through (E.ll) are substituted into equation (l4) to
give the following set of spatially discretized equationms,

fetexi® 0,2 + (exd® (o2 + Cez]” (b D(8] [1v]avol
V(i)

=-fp[N]T[FB]de1 - fo[N]T [N1V]dvol +

v(j) V(i)
f INTT[al[STlds + foCrux) T Teuwz)t ) g3 dVol (E.12)
S(3i) V(i)
T —_ oA — 11
+ jEN] [NI[vie(ni[Ni[Vvids -z [NL (®)],
. =]
Sp(3) K
where,
(8] = [Lgrexnpor “Nixporsur
= -r
NL(1) V{j)[cx] [D ; LVLU}VFle dvol,
NL(2) = f Tyt [D,] INLU] dVol,
V(J) P
NL(3) = f Cczl' [p ] [NLUD avol, _
'AGD)
o NL(4) = rex)t (7] (p ] [B] [1v] dvel,
- V()
L NL(5) = f revl’ [a) [Dy] (B8] [1v] dVol,
' V(i)

s 8 4 .
LAY
[t T
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NL(6) = f [cz]" [&] [p] [B] [1v] avol,
v(3)

Ty wz1h

NL(7) = -f (& p ([ux]® + (vy]
V(i)

NL(8) = -f [n1T (&) [n] [ST] ds,
S(3)

NL(9) = fLcx]® [A] [p,] [NLUldVol,
v{i)

NL(10) = f[cv]T [A] [p,] [NLUJ dVol,
V(i)

NL(11) = f{cz]¥ [&] [p,] [Nw] dvol,

v(3)
V(i) = Volume of the jth region,
and
S(3) = Surface area of the jth region with specified surface

tractions.

Once the volume and surface integrations are performed, Equation (E.12)
represents a set of non-linear, first-order, differential equations with
respect to the MT unknown nodal velocities [V]. Usually, the integrations
are done using the numerical method of Gaussian Quadrature, with the number
of integration points depending upon the interpolation function and the type
of problem.

2. Fluid-Type Behavior

In addition to the discretized matrices given in the previous section,
equation (22) involves several other velocity-dependent matrices. The most
complex is the strain-rate of equation (21) which involves a matrix of
products, with each product discretized to a series of matrix multiplica-
tions, i.e.,

NL& = E(UVWX) (UVWY) (UVWZ) (UVWXY) (UVWXZ) (UVWYZ)]T, (£.13)
where
UVWK = 2{(uxxv> (UXV) + (VXIV) (VXV) + (WKIV) (wa)},

UVWY = 2{(UY1V) (UYV) + (VYIV) (VYV) + (WYIV) (WYV)},
Uvwz = 2{(UZIV) (UZV) + (VZIV) (VZV) + (WZIV) (wzv>},

UVWXY

(UXIV) (UYV) + (UXV) (UYIV) + (VXIV) (VYV) + (VXV) (VYIV) +
(WXIV) (WYV) + (WXV) (WYLIV),
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UVWXZ = (UXIV) (UzZV) + (UXV) (UZIV) + (VXIV) (VZV) + (VXV) (VZIV) +
(WXIV) (WZV) + (WXV) (WzZIV),

CVWYZ = (UYIV) (UZV) + (UYV) (UZLIV) + (VYIV) (VZV) + (VYV) (VZIV) +
(WYTIV) (W2ZV) + (WYV) (WZIV),

txv = [ux] [v],
and

wzv = [wz] [V].

The remaining matrices are [H] and [H] which involve the velocity
implicitly through the VI, term. Using equations (19) and (E.4), and
previous matrix definitions, the following determinant is obtained,

,/f;" = | (1 + UXIV) (UYIV) (uzIv)| . (E.14)
(VXIV) (1 + VYIV) (VZIV)
(WXIV) (WYIV) (1 + WzZIv)

The time-derivative of this determinant can be written using equation
(20) as,

_33/1 = | (UXV) (UYV) (Uuzv)| . (E.15)
At 3 (VXV) (VYV) (VZV)
(WXV) (WYV) (WZV)

Using the above discretized matrices, equation (22) can be written as
the follow set of equations, :

(Lcx]Y [Erax] + [cY]T [ETav] + [cz]T [ETAz])[B[V]dVol

V(i)
= i/ p[N]T [FB]dVol -./;[N]T (N] [?]dVol +
V(i) V(i)
ST tal (sths + flore ctoxtBervr ety o (el16)
S(j) V{3
+/[NJT (8] (V] p [R] (N] [V1dS
Sp(t)

-/<[chT. rex] + [yt fey] + ezt [ezly ([B] [1v]

v - (1] - feEDyavol ]
Tr reyll r T 3
+ [([cx]" TETAX] + Tcy]” [ETAY] + [cz] [ETAZ))

V() .
("ef1 + [T dvol
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- [NLF(k)].
k=1

Note that in equation (E.16), the 6xl matrices [eE], [éE], (H] and [H]
involve array elements which are the matrix products of all the correspond-
ing MT nodal values. The twenty-three NLF terms are not rewritten here
since the forms are the same as before except with V= V(j), $* S(j), and

. equations (E.5) through (E.ll) being substituted for the corresponding
terms.
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In both equation (E.12) and equation (E.16), the spatial variables
have been integrated out, and the remaining unknowns are the MT nodal
velocities as some continuous function of time. The next approximation
is to replace the continuous time-behavior with a finite set of times for
determining the nodal velocities.

1. Elastic Behavior

Equation (E.l12) can be written in the standard form as
. 11
((xxJ+Lxy1+{xz]){1vl= -[FBI+LFT] -[MI[VI+{PI+[MF2[V]-L [NL(K) ], (F.1)
' k=1
where,

[kX]= f[CX]T[Dx][B]dVol,
V(3)

(kyl= IECY]T[D i[B]dvol,
v 7

(kz]= sTcz]*(p_I(Blavol,
v(3)

[FBl=/o [N]7(F,lavol,
v(§)

[FT]= sIN1TIN][sT]ds,
$(3)

(M]=ro [N]T[NIdVol,
v(j)
(pl=rp  ((uX)T+pvy) T4 (wz1 Ty avol,
B¢y
and, [MF]=r [NIT([N][V][a]) [N]ds.
Sp(j)

We now assume a piecewise non-zero, time-dependent, weighting function
WI(t), and appruximate the time-dependent nodal velocities, using the
following two equations, respectively.

N
WI(t)= :* WT_(t), (F.2)
n=0
and [V(t)] =INT (e)[V ,
MTx1 Vo (vm) ] (F.3)

where N is the total number of time-steps selected for a particular problem,
[V(n)] represents the MT nodal velocities at the time tn,and NTn(t) is

. . e e Pt BTN T e e . e DU e A .
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Tl A T T e e T e T e Ay .
. N AR - B B w s . . et - P
Y WP WS IS NT DI, PRTOUN TRV AR PR VT VR DU R W I Y I i S D O, WL T, R TR, VI R VIS R




she interpolation funcoion for the ath time-clement. Nole that the :Tn(:)
functions are non-zero only over the nch time-element. Substituting
equations (F.2) and (F.3) into equation (F.l) vields a set of Nt aquations
Of the following form,

-(F3l+FTI+(?] -~ = j::L(k)]fz:Tn(c)dc

—(ﬂl WT_( :»;Tq(:)jd:)ﬁ(n)]

+(fLﬂ?_wT1 () T (o) o)V ],

whare ¢ = zime-span over which the nch weizhting function Is non-zaro.

A wide variety of equations can be obtainad Irom equation (F.4)
ending upon the .assumptions involving WT_, NT and t£_. Also, the rerws
inside the spatial nairices may chanze with time due to either changing
Souncary cenditions, or temperajyre e-dependent material properties. Since
the characteriscic thermal time~’can be sevaral orders of ﬁaOnicude less
than the characteristic mechanical rime??d tor impact precble remperature-
dapendant material properties can be assumad constant dur‘ng cime steps
small in comparison to the characteristic therﬁah time. The boundary
condicions are u>uallv matchad by using suffiiciently small time-steps
associated with explicit solutica schenwes. However, for implicit schemes.
hich use larger time-stens, one mav want to either use some interdolation
scheme, or, to numerically intezrate the time-integrals.
The author has developed explicit fovms a
1 quadratic interpolation function for all the spatia
e

~

cr egu

rn

tion (F.%) by ass
1 matrices. However,
s which must be

<

riie rasulcing form iavolves a large number of macric

numerically evaluated and stored. In retrospect, a faster method appears
to be using program and input legic to flag carcain boundary condictions

51w ovar a1 cime-sten, aad than use Gaussian Juzdragfure®

,: which vary consideradly cim
Q!
‘.\
-’
A .
!! 29.
- 3.4. Boley and J.H. Weiner, THECRY OF THERMAL STRESCES, Char. I, Jonn
- ¥ileu and Sowms, Inc., 1960
- * 4 “quseign ovder N will exacciy integrate x nolumomial o7 opder DU-1.
- z ¢ , .
T
' .
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to numerically integrate the corresponding time-integral. Hence, this
latter approach will be used in the current study.

Because of the desire for large time-steps, the author selected an
interpolation function for a quadratic time-element, i.e.,

NIV T = N @a)IV(2n)] + N (20+1) [V(20+1) 1+ N (2n+2) [V(2042) 1 (2.5)

where Nt(Zn) = -T(l-1)/2,

Nt(2n+1) = l-1 7,
Nt(2n+2) = T(1 + 1)/2,
T = z(t-tmiddle)/Atn’

Atn= time-step associated with the nth time-element,

=t + At /2
n n

]

V(2n)] nodal velocities at start of time-sten,

[ |
<«
~~
i~
o]
i.
1

N
-
il

= nodal velocities at middle of time-step,
and,

(v(2n+2) ] nodal velocities at the end of the time-step.

[}

If we now assume that the nth weighting function is non-zero only over
the nth time-element, then t, = Atn and the first term in equation (F.4)
can be rewritten as,

/(EKx]+[KY]+[K23)[Iv]W'rn(t)dc =
t

S

tn n-l _ - -
ﬁ«"rn(t) ([Kx]+[KY]+[Kz]){[UO]+ T A_t_j{ /1 (- il-r)) dtN(2))
- j=1 2 -1 2

" (F.6)

1 -2 ; 1 - - - t - -

/ (1-1 ')dr[N(zj+1)]+/ ?(1+r)dr[N(2j+2);} +/ NT (t)_v(n)_dt }dc.

— n
-1 -1 2 t
n-1

Substituting for the quadratic interpolation functions and N integrating,
equation (F.6) becomes the following equation.
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Jxxy + (ry] + (k2] [19] WT_(e)de =
tS
%:ﬂ [wwzn (T) ([KX] + [KY] + [Kz])dT {tu,] (F.7)
n-1 _ _ _ )
+ At LAt (L (V@D + 4 [VQ3i+1)] + 1 [V(25+2)]}
2" §=1 Ati 3 3 3
+ zﬁi (K2 (V(2n)] + [KCn+l)] [T2n+1)] + [R(204+2)] [V(2042)1),
4
1
where, [K(2m)] = J([KX] + [KY] + [Kz])(5 - T° + T WI_(DdT,
-1 12 & 6
_ 1 —
[R(20+1)] = [ ([RX] + [KY] + [K2]) (2 + T - ©) WI_(D)dT,
-1 3 3
1
[R(20+2) = / ([RX] + [KY] + [KZ]) (=1 +7T° + 70 ) WI_(Ddt.
-1 2 & 6
Utilizing equations (F.5) and (E.?), equation (F.4) can be rewritten
as,

([K(2n)] + [M(2n)] - [MF(2n)]) [V(2n)]
+([K@2n+1)] + [(M2n+1)] - [MF(2n+1)]1)[V(2n+1)]
(F.8)

+([K(2n+2)] + [M(2n+2)] - [MF(2n+2)]) [V(2n+2)]

1
[NL(k)],

-[RV] - [FB] + [FT] + [P] - -t
k=1

1
(M(2n)] = -2/ [(M] WT_(7)(1-21) dt,

where,
At
n
o W e . T e o : e e s o
TR RSP R S el e e e el e e e P
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s 1
LR _ - - -
e (M(2n+1) ]= -8 SIMIWT_(7)TdT,
o~ -
At2 1
{ n
[M(2n+2)J=2_ /D _(F) (142) o,
:.'_',_ .ﬁtz -1
o n
S _ ! ) o
,. . (MF(2n)]= =1 f[l‘ﬁ'('r)]WTn(T'){r(l-'r)}dr ,
At -1
SR n
_— 1 - - -7 -
(yF (2n+1) J= _2 SOMF(T) JWT_(%) (1=t )dr,
At -1 n
n
_ S
L (MF(20+2)]= _1_/QMF(c) WT_(¢){T (1+7) }dr,
f X s -1
;T*;'; L _
°; (&VI=r wr_(©) ((RxJ+[RY+[kz]) dr*
e -1
2[t ] n-l 8t, o r=. .
o - ol . p —d (VNI
e n j=1 At
b n
i
‘ +[T(23+D) HLT2542) Y,
: 3 3
- - _ 2 l _ _
d [FT)= 57 /IFTIWT_(7)dr,
' < RS
o
:::}:
{:.-j; and, 1
._q [NL(k) )= 2 ﬁNL(k) ]W’I‘n(:.)d?.
at
- -1
T In the above equation, [V(2n)] corresponds to the known nodal velocities
e 2t the start of the time-step, and hence there are twice MT number of un-
!‘} ) knowns and equations represented by equation (F.8). This is the disadvantage
- of the quadratic time-element, and for large MT considerably more computer
: time is required.
"
Equation (F.8) has been divided by the ratio (4t,/2)” to eliminate a
) similar factor which appeared as the coefficient of the [K] matrices. Also,
"": the spatial matrices have been retained inside the time integrals so that, if
J:,,}’:, necessary, time dependent behavior can be numericallv inteerated.
.:'.\_-:4
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The last step is to select the weighting functions WI . In the
Galerkin approximation, one selects the weight function to"be the same
function as used for the element-interpolation. This implies three
functions which yield three matrix equations that can be combined into a
single time~-element. The single time-element is then combined with
successive quadratic time-elements which vields the recursion relationships
(see Chap. 17 of reference 8). The disadvantage of this approach is that
a series of simultaneous equations must be solved at each time-step. To
the author's knowledge commercial FE programs use recursion relationships
which assume only a single weighting function that is non-zero over a
single-time element. Furthermore, most programs use linear time-elements
which yield the familiar forward difference, central difference and back-
ward difference type of equations.

If the weighting function weights over more than one time-step, and
a linear time-element is assumed, then higher level schemes, such as
Houbolt's Method,* are obtained. The advantage of the higher level scheme
over the quadratic time-element is that there are only MT unknowns per time-
step. However, it appears that the number of stored matrices for the three-
level scheme is about the same as that for the quadratic time-element.
Therefore, computational speed involves a trade-off between more storage and
CPU time per time-step for the quadratic time-element versus fewer time-
steps required to solve a problem.

One should note that the usual displacement formulation of the linear
momentum equation involves a second-order equation in time, and a quadratic
time-element is used in many current FE programs. The corresponding
recursion relationship is a three-~lievel scheme’ with a variety of forms
similar to Newmark's general algorithm. 0 Some FE programs use a four-
level scheme, where there is still only MT unknowns, and special "starting"
algorithms must be used to determine the unknowns at the first three time-
nodes.

In order to perform numerical experiments, the author assumed that the
spatial matrices of the left-hand-side of equation(F.8) are independent
"of time within a time-step, and equation (F.8) was rewritten in the
following form,

[AIV(20+2) J+[BI[V(2n+1) #[CIT v(2n)]={ CF], n=0,1,...NT (F.9)

* - -
See Swanson Analusis Systems, Ine. Theoretical Manual for arvlication of
this method to a varity of FE programs, Ind Ed, 1983

30 - . - .
V.M. Newmark, "4 Method for Computation of Structural Dynamies", Prce.

dm. Sce. Civil Eng., 85, EMS, pr. 67-34, 1959.
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where the [A],[B],[C] and [CF] matrices take different forms depending
upon the weighting function assumption.

When a single weighting function is assumed over the time-step,
equation (F.9) becomes the usual three-level scheme with the following
change of the indices: 2a+2-n+l, 2n+l-»n, and 2n+n-l, with n=1, 2,...,NT.
Table F-1 lists six weighting functions selected*by the author and the -
corresponding matrix elements. Note that the [WF terms have been
neglected, [K =TRX]+[KY]+[KzI, and the [F] matrix reoresents the right-
hand-side of equation (F.8). All matrices are evaluated at the niddle
of the time-step At.

When three weighting functions are assumed over the time-step
the following form of the weighted residuals is obtained for a single
quadratic time-element,

- . = - -

Xp K, Ky f V(2n) K, F(2n)

Kyy Koy Ko V(2n+1) = | %, F(2n+1) (F.10)
4 7 2 n

LK31 Ky, Kag ] V(2n+2) Lz<3nr(2n+2)

where the K,., values are dependent upon the assumed weighting functions.
In this set df equations, the V(2n) are known (either the initial values,
or, from the previous time-step). Therefore, equation (F.l0) can be re-
written as

Kyy Kyg V(2n+1) ern F(2n+1)-K,,V(2n)
= - - (F.11)
2 +2) -
Ky, K33J V(2n+2) | Ky F(20+2)-K; V(20)
2MTx1

As discussed earlier, this larger system of equations is justified
only if either a better approximation is obtained for the same CPU time,
or the same approximation is obtained with less CPU time than the single
weighting function approach.

In order to evaluate the above K., coefficients, the author assumed
the following two sets:A. A true Galdtkin approximation using the second
through the fourth weighting functions given in Table F~l, and B. three
linear functions associated with the last two weighting functions given
in Table F-l;; The resulting K., coefficients are given in Table F-2.
Again, the _MF] terms have beeaneglected.

#* . .
These are the same as those used in reference 1§ S0 Tout » ororvariocsy
can be made with the standard iisrlocement approach.
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Table F-2 Coefficients for Equation (F.1l)
Associated with Two Sets of
Weighting Functions

“a
]
\h -
oS
e
{ Coefficient Set A
p K, 11[K(2n) 1= 2{M(2n)]
S el
5 3at°
) K 2K (20+1) ]
15 22 ———
b ""k N - 9
N
~
e, K [K(2n+2) ] + 2(M(2n+2)]
N 23 - 50 ==
Vg 3at
[ 4
‘ A
‘. K 110K (2n) 1+(M(2n) ]
R 3 5o 2
': 3at
N 11 —4[M(20+
A Ks, 45[K(2n+1)] 4[3( n+l) ]
L 35t
t.kc K [K(2n+2) 1+ [(M(20+2)]
e 33 5
L 36 At
{
Lo : X
s Kon 2/3at
- K3n 1/3at

Set B

30K (2n) +[M(2n) ]

2
32 2ael

[(RGn+1)]
6

-[K(2n+2) ]+[M(2n+2) ]

192 2At2

43[K(2n) 1+[M(2n) ]
480 6ol

3[K(2n+1) J-4[M(2n+1) ]

10 3At2

13[K(2n+2) J+7[M(2n+2) ]
480 6At2

1/2At

1/24t
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2. Fluid-Type Behavior

As discussed in Appendix E, the most complicated matrix involves the
strain-rate matrix of equation (E.13). Ianspection of this equation shows
that each arrav-element involves the velocity matrix [V]. Furthermore,
since each matrix product within the (UVW...) type of array-eiement
corresponds to a scalar, the (UXV) (UZIV) type of items can be rewritten
as (UZIV) (UXV), etc. Therefore, each array-element can be considered
as post multiplied by [V] and equation (E.l3) can be rewritten as

[Ntﬁ] = Tuxyz] [vi. (F.12)
6xMT
where [UXYZ(1)] = 2 {(uxIv) {ux] + ((vxIv) [vx] + (wxIv) [wx] 1},
L xMT

#

fuxyz(2)} = 2 {(vyIv) [uy] + (vyiv) [vy] + (wyiv) [wy] },

2 {zIv) [vz] + (vziv) [vz] + (wzrv) [wz] 1},

fl

(uxyz(3) ]

[uxyz(4) I=(uxIv) LUy +(uyTv) LUkl
+(VXIV) [VY +(VYIV) [VX]
+(WXIV) [WY J+(WYIV) [wX],

(UXYZ(3) J=(uxIV) [UZ J+(uzIV) [UX]
+(vXIV) [vZ I+ (vzIv) [vX]
+(WXIV) [WZ I+ (WZIV) (WX],

FUXYZ(6) J=(uyIv) [Uz]+(uzIv) [UY]
+(vYyIv)y [vz ]+ (vzIv)[vy]
+(WYIV)[WZ ]+ (wzIv) [WY].

Multiplying equation (E.16) by the nth weighting function, substituting
equations (F.3), (F.5) and (F.l12), integrating over time and rearranging
terms yields the following equation,

([KE(2n+2) ]+[ G (2n+2) J+[M(2n+2) ]-[MF (2n+2) J+[KEN(2n+2) ] )

(V(20+2) +([KE (2u+1) +{G(2n+1) J+[M(2n+1) ]-[MF (2n+1) ]

S +{KEN(2n+1) )TV (2n+1) 7+({KE(2n) 1+[G(2n) 1+[M(2n) ] (F.13)
e _ . _ L

. -[MF(2n) 7+[KEN(2n) ])[V(2n) }=-[GV]-[FB]+[FT]

o . 20

Y +[PEJ+(GXYZ +[ETAXYZ ]-S[NLF( K ]

e k=1

:2 k *®4,5,6
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where

and

— 1 -
[KE(2n)] = 1 !1({KEX] + [KEY] + [KEZ]) WT_(1){-T(1-7)}dT,

At
n
[KE(2n+1)] = 2/ ({KEX] + [REY] + [KEZ]) WI_(T)(1-T°)dT,
s -1
——— 1 — — e —
[KE(2n+2)] = 1  S([KEX] + [KEY] + [KEZ]) WTn(T)T(l+T)dT,
Atn -1
L 1
(KEN(2n)] = _1  J([KENX] + (KENY] + [KENZ]) WT_ () {-1(1-1) }d7,
be -1
—— 1 2
[KEN(2n+1)] = 2/ ([KENX] + [KENY] + [KENZ]) WT_(?)(1-T")dT,
e -1
L 1
[KEN(20+2)] = _1 / ([KENX] + [KENY] + [KENZ]) WI_(D)T(1+T)dT,
st -1
3 o1 23
[G(zn)]=IEGXYzJ(_§_3__;_)WT (73d7,
-1 124 6
- 1 - =3 - -
[G(2n+1) J=/(GXYZ](2+t-1 )WT_(1)dT,
-1 3 3 n
L -2
[G(7n+2)’-fFGXYzW( 1+1° +1 )WT (7)dT,
-1 2% & *®
1
=IWT_ (T)y[exyzldT*{2 [U ]
-1 it
n-1 At n
D S aven mIVeHn ]
i= ]. At 3 3

+1[V(2+2) 1)}
3




1
[(PE]= 2 f{[PEx]+[PEY]+[PEz]}an(¥)d¥,
At -1
n

1 -
(exvzi= 2 ¢ (rex1Trexy + feylt(ey] (cz1¥ (621} (e¥1avol WT_(7)eT,
t -1

n

[ETAXYZJ= 2 f[ETAXYz]WT (m)dT,
At -1
n

1
(NLF(k)] = 2/ [NLF(K)]WT_(T)dT,
st -1
n
[xEx]=f[cx}T[ETij[B]dVol,
V(i)

[KEY]=I[CY]T[ETij[B]del,
v(j)

rkzz]=/[cz] TETAZ1[BIdVol,
v(j)

[KENX]=I[CX]%([I]+[K])[ETAX][UXYZ] + [A][ETAX]([B]}dVol,
V(i)

[Kzuyj=f[0Y]ﬁ([1]+[K])EETAY][UXYZ] + [A]J[ETAY][B]}dVol,
V(i)

(KENZ1=/[cz1X([11+(A])(ETAZ][UXYZ] + [A] [ETAZ}[B]}dVol,
V(i)

[PEX 1=/ (p+p ) [UX]T dvol,
R e
V(i)

CPEY!= =/(p+p, )LDY] dvol,
v({3)

A T g

S

[PEZI=/(p+p, )[UZ] dvol,

Bs 20 s auten 2o

- v(3)

;E ;GXYzifﬂ[cmTIGX] + [CY]T[GY] + [CZ]T[GZ])[B]dVol,
- V(i)

o 9%

Pag

.

[

'
» - &

e W
«

.
Ll
POt up

...............




| S Y
T
L]

0
3
)

t‘_n

[ETAXYZ]=I([CX]T[ETAX]+[ CY]T[ETAY]
V(i) T E
+{cz] [ETAZ])[€ JdVol.

Note that the nonlinear terms NLF(k), k=4,5,6,21, 22and 23,
in equation (E.l6) have been rearranged into the [KEN] terms of the above
equation. Also, equation (F.13) has exactly the same form as equation
(F.8), except that the velocity coefficient-matrices[KE] and [KEN] depend
upon the unknown velocity. Hence, even if all the [NLF]matrices are

neglected, equation (F.l13) can only be solved via an iterative process.

For the special case of no strain-hardening i.e., [GXYZ]=0,
the [G] and [GV] matrices are identically zero and equation (F.13) contains
a common Atn term which can be canceled out. The resulting equation
corresponds to the familar first-order type of recursive equation.

Since the form of equation (F.l13) is similar to equation (F.8),
the explicit equations for the same assumptions and specific weighting
function, or set of weighting functions, will be the same. Therefore, the
coefficient matrices given in Tables F-1 and_F-2 also apply to equation
(F.13) if the IK] matrix is replaced by the[Gxyz ] ! matrix, and thel KE ,
EGE‘J, and [ MF ) matrices are neglected.

For the more general provlems, the [K] matrix of Tables F-1 and
F-2 must be replaced by three matrices corresponding to [G],[KE] and [KEN].
Using the same functions as previously for the elastic tvpe of behavior,
Table F-3 and F-4 list the corresponding [A],[B] and [C] matrices for usage
in equation (F.9). Similarly, Tables F-5 and F-6 list the K, ,coefficients
for usage in equation (F.ll) when applied to fluid-type behavlor.
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\: Table F-3 Possible Weighting Functions and the
N Corresponding MTxMT Matrices for
: Fluid-Type Behavior and Equation (F.9)
_ Function: Constant =1
1
3£ [al= 1 ([XEJ+[KEN])+[M]
- 64t Atz
N3
i (B]= 2 ([KEJ+[KEN])+[CXYZ]
o 3at 3
> fcl= _1 ([ReJ+[REND)+[Gxyz]-[M]
b 6ot ) 2
L] A
4 Function: -T(l-7)/2
- [al= -1 ([ke]+[xkEND)-[cxyz]-(M]
j SAt 60 At 2
[B)= _2 ([KEJ+[KEND)+13[GXYZ]+ & [M]
7 5S4t 30 e
o [cl= 4 (CREJ+{kEND+[Gxyz]- 3 [\4]
::: 558t 12 At“
J -2
" Function: (l-t7)
[al= 1 ((kEI+[xEND)-[oxyzl+[M]
)
. Toat 60 .2
", T8l= 4 ([kel]+[kEN])+[cxy2]
5at 3
» Tcl=_1 (CREMHKEND+11[exvz]-(M]
; 104t . 60 Atz
:
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::':',::; Table F-4 Possible Weighting Functions and the
:}.;Z:. corresponding MTxMT Matrices for Fluid-
‘-j.:-"_.‘ Type Behavior and Equation (F.9)
{ Function:;(1+1-)/2
e
'?":\:ﬁ: [A)= 4 ([KEJ+[KEN])+[GXYZ]+ 3[M]
e 5At 12 2
! ae
o (Bl= _2 ([KEH[KEND)+11[GXYZz]- 4 [M]
e 54t 15 2
Ve At
o
e (cl= -1 ([kEl+[REND)+11[GXYz]+ [M]
: 5At 60 2
At
oo
il -
; Function: -1, _lftft ,T, tnftftr&l
el
[al= _1 ([KE]"{KENJ)"{__]*LT
w: ':. 4at
" [B]= 1 ([REJ+[KEN])+[GCXYZ]
. 24t 3
R
- [cl= 1 ([KE]+[KEN])+ [cxyz] [M]
o 4ae at?
D
e o - =
};_:: Function: 147, tn—lftftn’ l-1, tnftftnﬂ
e (al= _1 ([xeJ+[KEN])-[GXYZI+(M 1
e 125t 96
e At
o rBl= 5 ([REJ+[KEND+[GXYZ]
o 6At 3
Sl
=
b tcl= 1 ([Ke]+(KEND+ 3[6XYZ]-[M]
) t 2
o5 124 16 At
'(_".-4
e

A
v

e T
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Table F-5 Coefficients for Equation (F.ll)
Associated with Set A of the
Weighting Functions

Coefficient
K 11 [G(2n)]+ 1 ([KE(2n) J4+{KEN(2n) D) - 2{M(2n)]
21 30 T5at 2
n 3at T
n
Koy 2{G(2n+1) 1+ 38  ([KE(2n+1) J+[KEN(20+1) ])
- 9 15At
n
K23 “[c(2n+2) 1+ 1 ([KE(2n+2) J+LKEN(2n+2)]) + 2[M(2n+2)]
30 lSAcn 3t 2
n
K 11{6(2n) 1= 1  ([KE(2n) J+[KEN(2n) J+[M(2n) ]
31 180 15At 2
"n 3At
n
Ky 110 (2n+1) 1+ 2 ([KE(2n+1) J+[KEN(2n+1) 1) -4 M(2n+1) ]
45 ISAtn o 2
n
Kyq [G(2n+2) 1+ 4 ([KE(2n+2) J+[KEN(2n+2) D+ (M(20+2)]
36 lSAtn At z
n
K2n 2/(3Atn)
K3n 1/(3Atn)
5; G(2n), G(2n+l1), G(2n+2) = [GXYZ] evaluated at times
r;i t2n, t2n+1, and trn2 respectively,
o
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.J':
‘.::'.:‘- Table F-6 Coefficients for Equation (F.1l1)
s Associated with Set B of the
! Weighting Functions

f : Coefficient

’ Ky 3062+ 1 ([KE(2n) H#[KEN(2n) )+{M(2n) ]

o 32 244t 2
iy n ZAtn

S
O Ky,  [6(2n+1)T+5  ([KE(2n+.) H{KEN(20+1) D)

P4, i Anh—— e
F. 6 & tn

o K [6C2n+) ]+ 1 ([KE(20+2) #IKEN (20+2) 1) +(M(2n+2) ]

23 192 240t 2

'-\ n 2At

b n

o

o Ky, 43 6(2n) -1 ([KE(2n) ]+[KEN(2n) D+{M(2n) ]

o 480 244t 2

. n 6 At

.

'.:'_‘ K32 3[G(2n+1) 1+ 1 ([KE(20+1) J+[KENQ(2n+1) D) -_4 [M(2n+1)]

2

{ 10 4ac 3ae 2

. f"‘ : n

K 13 [G(20+2) 1+ 7 ([KE(20+2) J+[KEN(2n+2) D+ 7 [M(2n+2) ]
- 33 %7 -

- 480 244t 2

. - n 64t

- n

i K 1/(28

:.":: 2n tn)

e K3n 1/ (ZAtn)
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APPENDIX G
SPATIALLY AND TEMPORALLY DISCRETIZED

ENERGY EQUATION
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The discretized linear momentum equation contains coefficients and
a pressure term which depend upon the temperature. The temperature
explicitly appears in the energy equation (D.4), and therefore, the
momentum and energy equations are coupled together. The fully discretized
. velocity can be utilized directly in equation (D.4), and the temperature
is spatially discretized using the following approximation,

. ™
e 40, 5 & by 'H VAL

ey &7 e
v

e A S N ]

NR  NPT(j)
T(%,y,2z,t) = L z NTE.(x,y,z) T, (t) (G.1)
. . i i
\ j=1 i=1
N NR
N 3 [NTE] [T(t)]
. j=1
where NTE = a trial function in terms of the spatial variables,
oy Ti(t)= the unknown value of the temperature at the ith node,
;; NPT(j)= number of temperature-nodal points in the jth region.
‘i Equation (23) is spatially discretized by substituting equation (G.1)
b, to yield
{ 9 (thermal part of EOS) = {dB + 3B; [NTE](T]
- It dT 3T
: + B, + 3B, (T]T [NTE])T [NTE] [T) (G.2)
[ 1 T o322 .
' 3T
N . T
L + 2B, [NTE}(TIHNTE]{T]+(38, &V, +5B, g’i—;{TJT{NTE] ) [NTE}[T].
- o, a3t i, ot
v 3 3
E The spatial gradients of the temperature are discretized into the
; following forms
: K 3T n +K 3Tn +K 3Tn = (K_nl[TX]
Xx== X yygy y 225, 2 XX 3
L G.3)
N + Kyy ny[TY] + Kzz nz[TZ]) [T], (
T
] VWe(k 3T + k 3T + K 31) = (BT] [KT] [BT] [T1, (G.4)
y % iy e
where [TX] = (5 NTE, ... 3 NTEpe],
“ Ix X
L
, (TY] = [33_ NTE, ....ga_NTETNP],
- y y
1
: (TZ] = [_B__NTE1 e 3 NTETNP]’
. Jz 3z
{
“
“~
N 103
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[BT] = ﬂrx] (ty] [1z]) TNPx3

(KT] = [K 0 0

The last term that must be discretized is the product involving the
strain-rate and stress. Using previously defined matrices, the strain-rate
matrix becomes,

21t = M T + AT uxvz) L. (G.5)

The stress matrix depends upon the condition of the material. For
elastic behavior, the stress matrix can be written as,

(o, .1 = [C

] = {C..] le]l - [p], (G.5)
nFexl -

NFGxNFG
where Cij = elastic compliances,*

1%,

[cij] = [oxx ny C 9%y Oxz cyz

(pl =1(ppp0O OIT.

when NFG equals six.

Therefore, the matrix product for elastic behavior is

OR [og,] = @17 (37T + [uxyz)t (G.7)

{[Cij] ((B) (1v] + (NLUD) - [pll}.

For fluid-type of behavior, equations (15) through (17) are used to
yield the following stress matrix for loading behavior,

(0,1 = [6] (le] = [e°D) + [ETA] (1€} = [E°) - [pg)y  (G.®)
2
. where [G] = GT 2{1] 1ol
Eﬁ (01 [1lfeye
3
Fa *The previously defined matrices [Di]’ i=x,v,z, are {or the special
-~ case of an isotropic material.
~
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B 10 = nggg [0 10

T
ey} = [pppop 00017, Pp =P+ D,
when NFG equals six.

(€17 Log51 = (171817 + (uxyz) H{(G1([B] [1V] + [NLU] - [eF])

+ [ETAJ{([B] + [uxvz]) (V] - [F]) - [pT]}.

The corresponding matrix product becomes,

(G.9)

If we now assume that the weighted momentum equations are zero for the
discretized values of temperature and velocity, and the weighting function

equals the trial function, energy equation (D.4) can be written in the
following form for each region,

( fo @y + 3y (IE] (1] + 38, (117 [(v7E]T (NTE] [TD)
- 3T
V()

[NTE]T (NTE]dVol}[T] + { p(ay(T) + a,(T) [T]T

V(i)
[NTE]) [NTE]T [NTE]dVol +/[BT] [KT] [BT]dVol +/E [NTE]T [NTE]dS
v(3) 5, (3)

+j’a(T,'1’°°) (ve) T (NTEJAS} (1) = /[NTE]T qds
S.(3) $,(3)

(G.10)

+ /p[NTE]T Qdvol + /H T_ (vTE] ds
v(3) 5, (3)

-/[NTE]T (Internal energy) (p[N]Fr [V]-n)dS
Sp(t)

5
+f ireiT acr,T) Tds 4 T (FV(O) ],
5.(3) k=1
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where a(T,Tw)

al(T)

az(T) =

a3(T) =

aQ(T) =

s, =
s, =
5.(1) =

(FV(D)] =
(FV(2)] =
(FV(3)] =
[FV(4)] =

[FV(5)] =

*Feosp

dB + B,

aT

2B. + 3B.,

2V 21

3B, I,
an; 3t
3B, I,
an; 5t

effective emissivity,

form factor,

Stephen-Boltzmann constant,
far-field environmental temperatur
Fffective film-coefficient,

S, + S
a

b + SC,

boundary of jth region which has a conductive flux
boundary of jth region which has a convective flux,

boundary of jth region which has a radiation-flux,

-rontE]T (V1T )T [F,]dvol,

V(i) .

-rovte)T (1T T (Vlavel,

v(3)

rivelT (@1 (07 (n) (sTias,
5(3)

s ovre)t (91T (T (31 [n) (sTlds
5(3)

SoINTE]Y (£ ~£ ) [€]F [..]dVol.

p e ij

V(i)

€,

(1’ vee)T (nE) (1) + T2 )% (INTED (T) + T,

q,

The flux q is either specified on an exterior boundary of the body, or

evaluated from an adjacent region using equation (G.3).

The product

[é]T [0,.] is given by either equation (G.7) or (G.9) depending upon the

materiaijcondition.

The velocity variable is implicitly contained within

the coetfficients of the left-hand-side of equation (G.10), and explicitly
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contained within the right-hand-side matrices [FV(k)], k=l,...4. The
temperature variable is implicitly contained within the [FV(5)] matrix.

Note that the usual quasi-linearization* of the radiation term has been
used in equation (G.10). However, even without the radiation term, equation
(G.10) is an extremely non-linear ordinary differential equation and must be

solved using some sort of iterative procedure. When the Bl and 82 -

contributions are ignored, then al(T) =c,o aZ(T) = a3(T) = aA(T) = 0 and,
if there is no radiatiom, the left-hand-side of equation (G.10) takes the
more familiar form of pcv[T] + [KT][T].

Excluding the implicit time-dependency of the ai(T) coefficients, the
left-hand-side of equation (G.10) can be rewritten in the following form of
temperature-dependent spatial integrals times the time~dependent temperature,

L.H.S. =+ ([CO] + [Cl] + [c2]) [T] + ([KO] + [Kl] + [K2] + [K3]

+ [K4]) [T], (G.11)
where

[cO] = [ pal(T) [CT]dVol,

V(i)
[Cl] = f paz(T) bl(T) [CT]dVol,

V() ’

[c2] = S 3B, bi(T) [CTldVol,

V(j) oT
[KO] = [ [BT] [KT] [BT]dVol,

V(3)
(K1] = [ h {CTldS,
(k2] = [ a(T,T)) [CTIdS, |

5.(3)
(K3] = f oa3(T) {CT]dVol,

V(i)
(Ka4] = [ pa,(T) b, (T) (CT]dVol,

v(3)

= [NTE]Y [NTE],
T NPT(3)
= ([NTE]  [T] = L NTE,.T. (t).
i=1 1
2 2,

= (T + T°) (T+T) (T~T) ~a(T, T)) (T -T).
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Y Note that a mild nonlinearity is introduced by the [CO] and [K3] terms,
N whereas, stronger nonlinearities are introduced respectively by the [Cl],
f} [K4], [C2] and {K2] terms. The volume and surface integrals cannot be

numerically evaluated until the temperature is known, and hence these
temperature-dependent spatial integrals can only be determined in some
a iterative manner.

N In order to discretize equation (G.l0)with respect to time, equation
k.- (G.10)is multiplied by a piecewise, non-zero, time-dependent weighting
- function WIE(t) and a trial function is introduced to approximate the

v temporal temperature behavior, i.e.,

[ NT
r WTE(t) = I WTE (t), (G.12)
k.~ m
R m=0
- and
W NT
(T(t)] = I N__ [T(m)], (G.13)
te
R m=0
>
R

where [T(m)] represents the TNP nodal temperatures at time tn and Nte is

Pl
sy

“A the time-dependent interpolation function for the temperature. Integrating
‘ over the entire time interval of interest, and using equation (G.ll), the
> energy equation becomes the following set of nonlinear algebraic equations
o for each time-step,
'E {J/. 2 ({cOo] + [Cl] + [C2]) WTE_ (T) t&te]d?
S At
>~ m
- s
> +f ([KO) + [K1] + [K2] + [K3] + [K4]) w'rsm(?) (NI dt} (G.14)
3\ ts
. 3 - =
C [T(m)] = J {la]l + [Q] + [h] - [IE] + [RD] + I [FV(K)IIWTE (v)dr,
- t k=1
- s
o T
o where [q] = J [NTE] q dS,
e [Q1 = spNIE]" § dvol,
- V(3)
i = T
. (h] = /h Tw [NTE]™ dS,
Sy (3)
. T T (=
o [IE] = /J [NTE} (Internal energy) (p[N}  [V]:n) dS,
: 550
- [RD] = / (NTE]T a(T,T_) T ds.
” 5.(3)
=
o 108
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Lig
Ly
s
:-j,._x‘i Note that_the (FV] terms include the time-dependent function

i [V] = [\1 (M1 [V(n)], which is explicitly given by equation (F.5). Also,
"M

: the time-step Atm for the thermal approximation could be larger than the Atn
X :‘_{: used in the velocity approximation, in which case the [V] term would involve
.7 a sum of interpolation terms.
f::-t:-:: X If a quadratic time-element is assumed for the temperature behavior,
VY then the algebraic equations take the form of equations (F.9) or (F.l1).
_,‘ Similarly, the coefficients are given by Tables F-3 through F-6, with the
B [GXYZ] and [G] matrices omitted, all coefficients multiplied by Atn, and the
K- following substitutions made: ([KE] + [KEN]) + [KT], and [M] + [CT] where

-‘:_
e (KT = £([KO] + (K1] + [K2] + [K3] + [K4]) WIE  (7) [N ] dr,

N ts
e [CT] = f([cO0] + [C1] + [c2]) WIE_ (T) [N_ ] dT.

e m te
M%) t
LA s
ey
){-::‘j For ballistic penetration problems, the temperature change between
el o time-steps might be realistically modeled using a linear variation. If
.J a single weighting function WTEm(T) is assumed over the time interval, then
'.:"\'.: equation (G.l4) becomes the classical "implicitness 8" equation (0<8<l) for
Sy a first order equation, i.e.,
{1 (CT(T )] + 8 [RT(T )1} T, + (-l [CK(T )] (6-15)
‘ At At
Ane n n
Qi - -
3 + (1-0) [KI(T_ )1 }T = F o
e

. where

Tn+9 = (1-8) Tn + 9Tn+1’

Y
._‘I-"i Forg = (1°8) Fy +OF >
P and which can be solved for T, using a linear iteration.
Rather than the above linear iteration, Bakera uses a Newton-Raphson
AN iteration scheme of the following form,

RS
s, . P+l _ P
_-";‘_:. [J(Hn+1)] [GTn+l] = [Hn+1] ] (G'le)

~ where
] P+1 P P+l
o8 [Toey) (Tod + 18T

-
P - P P - = P P _
o (8,1 [CT_g1° € (1_,,] [T 1} + 0 [(XT_, 1" [T 1%+ (1-9)
[ At
s :

¥ —_
“:;‘:}'- (KT 1 (T ] + @ (F .1+ (1-8) (F 1

- J
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SICHINY R TCIVEI LR
[CT] +4oKT) +( 1 3[CT] + e3[KTI\[T +1]P + 3[F]
At Atn 9[ T ) a(t1/ © 31T]

During the second year of this research, several first order,
non-linear, equations will be evaluated using a variety of the above
techniques, and several of the most promising techniques will be selected.
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